2021 Vol. 48, No. 5
Article Contents

ZHANG Yunhui, LI Xiao, XU Zhengxuan, CHANG Xingwang, HUANG Xun, DUO Ji. An analysis of the genesis and engineering influence of geothermal water in the Kangding tunnel site of the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 46-53. doi: 10.16030/j.cnki.issn.1000-3665.202104007
Citation: ZHANG Yunhui, LI Xiao, XU Zhengxuan, CHANG Xingwang, HUANG Xun, DUO Ji. An analysis of the genesis and engineering influence of geothermal water in the Kangding tunnel site of the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 46-53. doi: 10.16030/j.cnki.issn.1000-3665.202104007

An analysis of the genesis and engineering influence of geothermal water in the Kangding tunnel site of the Sichuan-Tibet Railway

More Information
  • The Kangding tunnel of the Sichuan-Tibet Railway crosses the Xianshuihe Fault Zone where geothermal abnormity occurs and is harmful for railway construction. This paper analyzes the genetic mechanism of geothermal waters through the integration of field survey, hydrochemical analysis and D-O isotopic experiments. The results show that HCO3·Cl—Na and HCO3—Na types are the main hydrochemical types of hot springs in the Kangding tunnel area, which exists in the Zheduotang, Kangding and Zhonggu geothermal areas. Geothermal waters are immature and the reservoir temperature ranges from 104 ℃ to 172 ℃. Deep initial geothermal waters display the reservoir temperature of 186−250 ℃ and are mixed by 56%−81% of cold water. Hydrogen and oxygen isotopes show that the recharge elevation of the geothermal water ranges from 3768 m to 4926 m. In the study area, geothermal waters are recharged by water source at high elevation. The main fault is the structure of thermal conductivity, and secondary faults and fracture zones are the channel of water migration. Geothermal waters arise and expose as hot springs on the land surface. Simulated geothermal field of 100 m has the temperatures of 35.4−95.1 ℃. Relatively low-temperature channel may be existed among three geothermal areas. High-temperature geohazard induced by geothermal water should be focused in the Kangding area during tunnel construction.

  • 加载中
  • [1] 唐晗晗, 郭良辉, 方圆. 青藏高原东南缘热流估算及与地震活动相关性分析[J]. 地球物理学报,2020,63(3):1056 − 1069. [TANG Hanhan, GUO Lianghui, FANG Yuan. Estimation of heat flow in southeastern margin of Tibetan Plateau and its analysis of the correlation with earthquake activity[J]. Chinese Journal of Geophysics,2020,63(3):1056 − 1069. (in Chinese with English abstract) doi: 10.6038/cjg2019N0045

    CrossRef Google Scholar

    [2] 李晓, 王金金, 黄珣, 等. 鲜水河断裂带康定至道孚段热水化学与同位素特征[J]. 成都理工大学学报(自然科学版),2018,45(6):733 − 745. [LI Xiao, WANG Jinjin, HUANG Xun, et al. Chemical and isotopic characteristics of hot water in the Kangding-Daofu section of Xianshuihe fault zone, Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2018,45(6):733 − 745. (in Chinese with English abstract)

    Google Scholar

    [3] 张健, 李午阳, 唐显春, 等. 川西高温水热活动区的地热学分析[J]. 中国科学: 地球科学,2017,47(8):899 − 915. [ZHANG Jian, LI Wuyang, TANG Xianchun, et al. Geothermal data analysis at the high-temperature hydrothermal area in Western Sichuan[J]. Science China Earth Sciences,2017,47(8):899 − 915. (in Chinese with English abstract)

    Google Scholar

    [4] ZHANG J, LI W Y, TANG X C, et al. Geothermal data analysis at the high-temperature hydrothermal area in Western Sichuan[J]. Science China Earth Sciences,2017,60(8):1507 − 1521. doi: 10.1007/s11430-016-9053-2

    CrossRef Google Scholar

    [5] TANG X C, ZHANG J, PANG Z H, et al. The eastern Tibetan Plateau geothermal belt, Western China: Geology, geophysics, genesis, and hydrothermal system[J]. Tectonophysics,2017,717:433 − 448. doi: 10.1016/j.tecto.2017.08.035

    CrossRef Google Scholar

    [6] LI X, HUANG X, LIAO X, et al. Hydrogeochemical characteristics and conceptual model of the geothermal waters in the Xianshuihe fault zone, southwestern China[J]. International Journal of Environmental Research and Public Health,2020,17(2):500. doi: 10.3390/ijerph17020500

    CrossRef Google Scholar

    [7] LI B, SHI Z M, WANG G C, et al. Earthquake-related hydrochemical changes in thermal springs in the Xianshuihe Fault zone, Western China[J]. Journal of Hydrology,2019,579:124175. doi: 10.1016/j.jhydrol.2019.124175

    CrossRef Google Scholar

    [8] QI J H, XU M, AN C J, et al. Characterizations of geothermal springs along the Moxi deep fault in the western Sichuan plateau, China[J]. Physics of the Earth and Planetary Interiors,2017,263:12 − 22. doi: 10.1016/j.pepi.2017.01.001

    CrossRef Google Scholar

    [9] ZHANG Y H, XU M, LI X, et al. Hydrochemical characteristics and multivariate statistical analysis of natural water system: a case study in Kangding County, southwestern China[J]. Water,2018,10(1):80 − 96. doi: 10.3390/w10010080

    CrossRef Google Scholar

    [10] 卞跃跃, 赵丹. 四川康定地热田地下热水成因研究[J]. 地球学报,2018,39(4):491 − 497. [BIAN Yueyue, ZHAO Dan. Genesis of geothermal waters in the Kangding geothermal field, Sichuan Province[J]. Acta Geoscientica Sinica,2018,39(4):491 − 497. (in Chinese with English abstract) doi: 10.3975/cagsb.2018.060401

    CrossRef Google Scholar

    [11] LUO J, PANG Z H, KONG Y K, et al. Geothermal potential evaluation and development prioritization based on geochemistry of geothermal waters from Kangding area, western Sichuan, China[J]. Environmental Earth Sciences,2017,76(9):1 − 24.

    Google Scholar

    [12] GUO Q, PANG Z H, WANG Y C, et al. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas[J]. Applied Geochemistry,2017,81:63 − 75. doi: 10.1016/j.apgeochem.2017.03.007

    CrossRef Google Scholar

    [13] 张云辉. 鲜水河断裂康定-磨西段地热系统成因及开发利用研究[D]. 成都: 成都理工大学, 2018.

    Google Scholar

    ZHANG Yunhui. Research on genesis and development of the geothermal system in the Kangding-moxi segment of the Xianshuihe fault[D]. Chengdu: Chengdu University of Technology, 2018. (in Chinese with English abstract)

    Google Scholar

    [14] LI J X, YANG G, SAGOE G, et al. Major hydrogeochemical processes controlling the composition of geothermal waters in the Kangding geothermal field, western Sichuan Province[J]. Geothermics,2018,75:154 − 163. doi: 10.1016/j.geothermics.2018.04.008

    CrossRef Google Scholar

    [15] LIU Q Q, SHI Y N, WEI D P, et al. Near-surface geothermal gradient observation and geothermal analyses in the Xianshuihe fault zone, eastern Tibetan Plateau[J]. Acta Geologica Sinica - English Edition,2017,91(2):414 − 428. doi: 10.1111/1755-6724.13108

    CrossRef Google Scholar

    [16] 梁信之, 谭庆鹄, 师常庆, 等. 1∶20万康定幅区域报告[R]. 成都: 四川省地质矿产局区域调查队, 1985.

    Google Scholar

    LIANG Xinzhi, TAN Qinghu, SHI Changqing, et al. 1∶200 000 Kangding regional survey report[R]. Chengdu: Regional Geological Survey Party, Sichuan Bureau of Geological Exploration and Exploration of Mineral Resources, Sichuan, 1985.

    Google Scholar

    [17] GIGGENBACH W F. Geothermal solute equilibria Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta,1988,52(12):2749 − 2765. doi: 10.1016/0016-7037(88)90143-3

    CrossRef Google Scholar

    [18] 史杰, 乃尉华, 李明, 等. 新疆曲曼高温地热田水文地球化学特征研究[J]. 水文地质工程地质,2018,45(3):165 − 172. [SHI Jie, NAI Weihua, LI Ming, et al. Hydrogeochemical characteristics of high temperature geothermal field of the Quman geothermal field in Xinjiang[J]. Hydrogeology & Engineering Geology,2018,45(3):165 − 172. (in Chinese with English abstract)

    Google Scholar

    [19] FOURNIER R O. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics,1977,5:41 − 50. doi: 10.1016/0375-6505(77)90007-4

    CrossRef Google Scholar

    [20] 李明辉, 袁建飞, 黄从俊, 等. 四川广安铜锣山背斜热储性质及地热成因模式[J]. 水文地质工程地质,2020,47(6):36 − 46. [LI Minghui, YUAN Jianfei, HUANG Congjun, et al. A study of the characteristics of geothermal reservoir and genesis of thermal groundwater in the Tongluoshan anticline near Guang’an in east Sichuan[J]. Hydrogeology & Engineering Geology,2020,47(6):36 − 46. (in Chinese with English abstract)

    Google Scholar

    [21] CRAIG H. Isotopic variations in meteoric waters[J]. Science,1961,133(3465):1702 − 1703. doi: 10.1126/science.133.3465.1702

    CrossRef Google Scholar

    [22] 宋春林, 孙向阳, 王根绪. 贡嘎山亚高山降水稳定同位素特征及水汽来源研究[J]. 长江流域资源与环境,2015,24(11):1860 − 1869. [SONG Chunlin, SUN Xiangyang, WANG Genxu. A study on precipitation stable isotopes characteristics and vapor sources of the subalpine Gongga mountain, China[J]. Resources and Environment in the Yangtze Basin,2015,24(11):1860 − 1869. (in Chinese with English abstract) doi: 10.11870/cjlyzyyhj201511008

    CrossRef Google Scholar

    [23] 赵志宏, 徐浩然, 刘峰, 等. 川藏铁路折多山段隧道温度场与热害初步预测[J]. 现代地质,2021,35(1):180 − 187. [ZHAO Zhihong, XU Haoran, LIU Feng, et al. Preliminary prediction of temperature field and thermal damage in Zheduoshan region along Sichuan-Tibet Railway[J]. Geoscience,2021,35(1):180 − 187. (in Chinese with English abstract)

    Google Scholar

    [24] 何丽娟, 汪集旸. “大地热流”等地热学重要术语的概念与应用[J]. 中国科技术语,2021,23(3):3 − 9. [HE Lijuan, WANG Jiyang. Concept and application of some important terms in geothermics and geophysics such as terrestrial heat flow[J]. China Terminology,2021,23(3):3 − 9. (in Chinese with English abstract) doi: 10.12339/j.issn.1673-8578.2021.03.001

    CrossRef Google Scholar

    [25] 姜光政, 高堋, 饶松, 等. 中国大陆地区大地热流数据汇编(第四版)[J]. 地球物理学报,2016,59(8):2892 − 2910. [JIANG Guangzheng, GAO Peng, RAO Song, et al. Compilation of heat flow data in the continental area of China(4th edition)[J]. Chinese Journal of Geophysics,2016,59(8):2892 − 2910. (in Chinese with English abstract) doi: 10.6038/cjg20160815

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(2099) PDF downloads(39) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint