Citation: | XU Mo, JIANG Liangwen, LI Xiao, QI Jihong, ZHANG Qiang, LI Xiao. Major engineering hydrogeological problems along the Ya’an-Linzhi section of the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 13-22. doi: 10.16030/j.cnki.issn.1000-3665.202103101 |
The Sichuan-Tibet Railway is located in the continental collision orogenic belt. Under the special geological structure background, the hydrogeological conditions along the railway are extremely complicated, which seriously restricts the planning and construction and safe operation of the Sichuan-Tibet Railway. To reduce the risk of major engineering hydrogeological disaster, and from the perspective of engineering hydrogeology, by combining the research results of basic geology and engineering geology, this paper expounds the major engineering hydrogeological problems along the Ya’an-Lingchi Section and puts forward suggestions for further research. The results show that the Ya’an-Lingchi section of the Sichuan-Tibet Railway may encounter three major engineering hydrogeological problems, namely, high water pressure and water inrush, high-temperature heat-damage of the tunnel, and the impact of tunnel drainage on ecological environment. Several regional fault zones developed along the railway may control the distribution of strata, hydrothermal activities and mineral resources and the circulation and evolution of groundwater, leading to prominent problems such as high-pressure water inrush, high-temperature heat-damage and groundwater drainage with high TDS in deep and long tunnels through the fault zone. The next step of the research on major engineering hydrogeological problems along the Sichuan-Tibet Railway is mainly to carry out high-precision and multi-scale hydrogeological survey, grasp the development rules and disaster-causing mechanisms of the major problems, and build a fine prediction and evaluation system and an active and passive disaster prevention and control system.
[1] | 郭长宝, 张永双, 蒋良文, 等. 川藏铁路沿线及邻区环境工程地质问题概论[J]. 现代地质,2017,31(5):877 − 889. [GUO Changbao, ZHANG Yongshuang, JIANG Liangwen, et al. Discussion on the environmental and engineering geological problems along the Sichuan-Tibet Railway and its adjacent area[J]. Geoscience,2017,31(5):877 − 889. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-8527.2017.05.001 |
[2] | 潘桂棠, 任飞, 尹福光, 等. 洋板块地质与川藏铁路工程地质关键区带[J]. 地球科学,2020,45(7):2293 − 2304. [PAN Guitang, REN Fei, YIN Fuguang, et al. Key zones of oceanic plate geology and Sichuan-Tibet Railway project[J]. Earth Science,2020,45(7):2293 − 2304. (in Chinese with English abstract) |
[3] | LU C F, CAI C X. Challenges and countermeasures for construction safety during the Sichuan-Tibet Railway project[J]. Engineering,2019,5(5):833 − 838. doi: 10.1016/j.eng.2019.06.007 |
[4] | 彭建兵, 崔鹏, 庄建琦. 川藏铁路对工程地质提出的挑战[J]. 岩石力学与工程学报,2020,39(12):2377 − 2389. [PENG Jianbing, CUI Peng, ZHUANG Jianqi. Challenges to engineering geology of Sichuan-Tibet Railway[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(12):2377 − 2389. (in Chinese with English abstract) |
[5] | 郭长宝, 王保弟, 刘建康, 等. 川藏铁路交通廊道地质调查工程主要进展与成果[J]. 中国地质调查,2020,7(6):1 − 12. [GUO Changbao, WANG Baodi, LIU Jiankang, et al. Main progress and achievements of the geological survey project of Sichuan-Tibet Railway traffic corridor[J]. Geological Survey of China,2020,7(6):1 − 12. (in Chinese with English abstract) |
[6] | 宋章, 张广泽, 蒋良文, 等. 川藏铁路工程地质特征及地质选线原则[J]. 铁道建筑,2017,57(2):142 − 145. [SONG Zhang, ZHANG Guangze, JIANG Liangwen, et al. Engineering geological features and geological route selection principle of Sichuan-Tibet Railway[J]. Railway Engineering,2017,57(2):142 − 145. (in Chinese with English abstract) |
[7] | 许佑顶, 姚令侃. 川藏铁路沿线特殊环境地质问题的认识与思考[J]. 铁道工程学报,2017,34(1):1 − 5. [XU Youding, YAO Lingkan. Some cognitions and thinkings about the specific geo-environmental problems along the Sichuan-Tibet Railway[J]. Journal of Railway Engineering Society,2017,34(1):1 − 5. (in Chinese with English abstract) |
[8] | 杨德宏. 川藏铁路昌都至林芝段主要工程地质问题分析[J]. 铁道标准设计,2019,63(9):16 − 22. [YANG Dehong. Analysis of main engineering geological problems in Changdu to Linzhi section of Sichuan-Tibet Railway[J]. Railway Standard Design,2019,63(9):16 − 22. (in Chinese with English abstract) |
[9] | 文力, 魏鹏飞, 常华进, 等. 青藏高原周边地区河流分形特征与地貌、构造活动耦合关系[J]. 地质通报,2018,37(6):965 − 974. [WEN Li, WEI Pengfei, CHANG Huajin, et al. A study of the coupling relationship between fractal characteristics of river, geomorphology and tectonic activity in areas around the Tibetan Plateau[J]. Geological Bulletin of China,2018,37(6):965 − 974. (in Chinese with English abstract) |
[10] | 潘桂棠, 肖庆辉, 尹福光, 等. 中国大地质构造[M]. 北京: 地质出版社, 2017. PAN Guitang, XIAO Qinghui, YIN Fuguang, et al. Great geological structure of China[M]. Beijing: Geology Press, 2017.(in Chinese) |
[11] | 任文峰. 高水压隧道应力场—位移场—渗流场耦合理论及注浆防水研究[D]. 长沙: 中南大学, 2013. REN Wenfeng. Theory research of stress field displacement field and seepage field and study on grouting waterproofing of high water pressure tunnel[D]. Changsha: Central South University, 2013. (in Chinese with English abstract) |
[12] | 黄润秋, 王贤能, 陈龙生. 深埋隧道涌水过程的水力劈裂作用分析[J]. 岩石力学与工程学报,2000,19(5):573 − 576. [HUANG Runqiu, WANG Xianneng, CHEN Longsheng. Hydro-splitting off analysis on underground water in deep-lying tunnels and its effect on water gushing out[J]. Chinese Journal of Rock Mechanics and Engineering,2000,19(5):573 − 576. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2000.05.006 |
[13] | 许模, 毛邦燕, 张广泽, 等. 青藏高原东缘梯度带大气CO2含量与岩溶发育相关性初探[J]. 成都理工大学学报(自然科学版),2020,47(6):724 − 732. [XU Mo, MAO Bangyan, ZHANG Guangze, et al. A preliminary study on correlation of atmospheric CO2 concentration and karst development in the eastern margin of Qinghai-Tibet plateau, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition),2020,47(6):724 − 732. (in Chinese with English abstract) |
[14] | 胡圣标, 黄少鹏. 中国陆地大地热流[C]//汪集旸. 地热学及其应用. 北京: 科学出版社, 2015. HU Shengbiao, HUANG Shaopeng. Heat flow in the continental area of China[C]//WANG Jiyang. Geothermics and its applications. Beijing: Science Press, 2015. (in Chinese) |
[15] | 姜光政, 高堋, 饶松, 等. 中国大陆地区大地热流数据汇编(第四版)[J]. 地球物理学报,2016,59(8):2892 − 2910. [JIANG Guangzheng, GAO Peng, RAO Song, et al. Compilation of heat flow data in the continental area of China (4th edition)[J]. Chinese Journal of Geophysics,2016,59(8):2892 − 2910. (in Chinese with English abstract) doi: 10.6038/cjg20160815 |
[16] | 廖志杰, 赵平. 滇藏地热带: 地热资源和典型地热系统[M].北京: 科学出版社, 1999. LIAO Zhijie, ZHAO Ping. Yunnan-Tibet geothermal belt-geothermal resources and typical geothermal systems[M]. Beijing: Science Press, 1999.(in Chinese) |
[17] | 李振清, 侯增谦, 聂凤军, 等. 藏南上地壳低速高导层的性质与分布:来自热水流体活动的证据[J]. 地质学报,2005,79(1):68 − 77. [LI Zhenqing, HOU Zengqian, NIE Fengjun, et al. Characteristic and distribution of the partial melting layers in the upper crust: evidence from active hydrothermal fluid in the south Tibet[J]. Acta Geologica Sinica,2005,79(1):68 − 77. (in Chinese with English abstract) |
[18] | 白嘉启, 梅琳, 杨美伶. 青藏高原地热资源与地壳热结构[J]. 地质力学学报,2006,12(3):354 − 362. [BAI Jiaqi, MEI Lin, YANG Meiling. Geothermal resources and crustal thermal structure of the Qinghai-Tibet plateau[J]. Journal of Geomechanics,2006,12(3):354 − 362. (in Chinese with English abstract) |
[19] | 刘美, 白登海, 肖鹏飞. 青藏高原东部岩石圈电性结构特征及其构造意义[J]. 地震地质,2010,32(1):51 − 58. [LIU Mei, BAI Denghai, XIAO Pengfei. The electrical conductivity structure of the eastern Tibetan Plateau and its tectonic implications[J]. Seismology and Geology,2010,32(1):51 − 58. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2010.01.005 |
[20] | 王生仁, 张晓宇, 杜世回, 等. 川藏铁路拉月隧道穿越东构造结地温分布特征及预测[J]. 隧道建设(中英文),2021,41(1):100 − 107. [WANG Shengren, ZHANG Xiaoyu, DU Shihui, et al. Geothermal distribution characteristics and prediction of Layue tunnel of Sichuan-Tibet Railway passing through east syntaxis[J]. Tunnel Construction,2021,41(1):100 − 107. (in Chinese with English abstract) |
[21] | 李苍松, 李强, 史永跃, 等. 关于川藏铁路隧道施工地下水环境保护的认识和建议[J]. 现代隧道技术,2019,56(增刊1):24 − 33. [LI Cangsong, LI Qiang, SHI Yongyue, et al. Understanding and suggestions on groundwater environmental protection in Sichuan-Tibet Railway tunnel construction[J]. Modern Tunnelling Technology,2019,56(Sup1):24 − 33. (in Chinese with English abstract) |
[22] | 刘金刚. 基于生态环境保护的隧道排水控制研究[J]. 现代隧道技术,2014,51(3):61 − 66. [LIU Jingang. Research on tunnel drainage control based on ecological environment protection[J]. Modern Tunnelling Technology,2014,51(3):61 − 66. (in Chinese with English abstract) |
[23] | 侯增谦, 莫宣学, 杨志明, 等. 青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型[J]. 中国地质,2006,33(2):340 − 351. [HOU Zengqian, MO Xuanxue, YANG Zhiming, et al. Metallogeneses in the collisional orogen of the Qinghai-Tibet Plateau: Tectonic setting, tempo-spatial distribution and ore deposit types[J]. Geology in China,2006,33(2):340 − 351. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3657.2006.02.013 |
[24] | 张彧齐, 周训, 刘海生, 等. 云南兰坪—思茅盆地红层中温泉和盐泉的水文地质特征[J]. 水文地质工程地质,2018,45(3):40 − 48. [ZHANG Yuqi, ZHOU Xun, LIU Haisheng, et al. Hydrogeological characteristics of the hot springs and salty springs occurring in the redbeds in the Lanping-Simao Basin of Yunnan[J]. Hydrogeology & Engineering Geology,2018,45(3):40 − 48. (in Chinese with English abstract) |
[25] | QI J H, LI X, XU M, et al. Origin of saline springs in Yanjing, Tibet: Hydrochemical and isotopic characteristics[J]. Applied Geochemistry,2018,96:164 − 176. doi: 10.1016/j.apgeochem.2018.06.013 |
[26] | 杨艳娜. 西南山区岩溶隧道涌突水灾害危险性评价系统研究[D]. 成都: 成都理工大学, 2009. YANG Yanna. Research of karst tunnel water bursting hazard risk assessment system in the southwest mountainous area[D]. Chengdu: Chengdu University of Technology, 2009. (in Chinese with English abstract) |
[27] | 中国中铁二院工程集团有限责任公司, 成都理工大学地质灾害防治与地质环境保护国家重点实验室. 高铁隧道外水压力多尺度集成分析及应用研究[R]. 2018. China Railway Eryuan Engineering Group Co, Ltd, State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology. Multi-scale integrated analysis and application of external water pressure of tunnel of high-speed railway tunnels[R]. 2018. (in Chinese) |
Typical artesian borehole along the Sichuan-Tibet Railway
Spatial distribution of karstified strata and karst spring along the Ya’an-Linzhi section of the Sichuan-Tibet Railway
Typical characteristics of karst development along the Sichuan-Tibet Railway
Typical high-temperature geothermal springs along the Sichuan-Tibet Railway
Formation model of geothermal water in the Himalayan Geothermal Belt
Distribution of geothermal springs and earthquakes along the Ya’an-Linzhi section of the Sichuan-Tibet Railway
Effect of tunnel drainage on the groundwater seepage field