2021 Vol. 48, No. 5
Article Contents

CHEN Shikuo, LI Hanrui, ZHOU Hang, CHEN Xingqiang, LIU Tong. Route selection of deep-lying and hard rock tunnel in the Sichuan-Tibet Railway based on rock burst risk assessment[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 81-90. doi: 10.16030/j.cnki.issn.1000-3665.202103099
Citation: CHEN Shikuo, LI Hanrui, ZHOU Hang, CHEN Xingqiang, LIU Tong. Route selection of deep-lying and hard rock tunnel in the Sichuan-Tibet Railway based on rock burst risk assessment[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 81-90. doi: 10.16030/j.cnki.issn.1000-3665.202103099

Route selection of deep-lying and hard rock tunnel in the Sichuan-Tibet Railway based on rock burst risk assessment

More Information
  • The large terrain undulations and strong regional geological structures are the typical characteristics along the Sichuan-Tibet Railway. The high ground stress problem in tunnel construction is extremely complex, especially the rockburst problem in deep-lying and hard rock tunnels, which restricts route selection schemes and becomes a major difficult problem of construction. Because of the complex geological conditions of the tunnel engineering, the evaluation results often deviate from the actual situation if the rockburst evaluation index is not pertinent. The key factors of rockburst is considering comprehensively, and five factors are selected as the evaluation indexes, including the ratio of the uniaxial compressive strength of rock to the maximum main stress of the surrounding cave wall, the ratio of the maximum tangential stress of the surrounding cave wall to the uniaxial compressive strength of rock, the ratio of compressive to the tensile strength of rock, the elastic strain energy index, and the intactness index of rock mass. The entropy weight method is used to determine the weight of each index, and a rock burst risk assessment model is constructed based on the basic theory and calculation rules of the ideal point method. By calculating the distance between each mileage section and the ideal point, a comprehensive comparison of rock burst risk assessment is carried out on three route plans of a tunnel on the Sichuan-Tibet Railway. The results show that the total rock burst sections of route B is 24.9%, and the uncontrollable rock burst sections account for 13.4%. The route B is about 4% lower than the other two alternative schemes. The route B is determined as the optimal plan according to the impact of rock burst disasters. This method can provide a new scientific basis and technical support for the comprehensive geological selection of deep-lying and hard rock tunnels.

  • 加载中
  • [1] 严健, 何川, 汪波, 等. 雅鲁藏布江缝合带深埋长大隧道群岩爆孕育及特征[J]. 岩石力学与工程学报,2019,38(4):769 − 781. [YAN Jian, HE Chuan, WANG Bo, et al. Inoculation and characters of rockbursts in extra-long and deep-lying tunnels located on Yarlung Zangbo suture[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(4):769 − 781. (in Chinese with English abstract)

    Google Scholar

    [2] 何怡帆, 李天斌, 曹海洋. 隧道施工期岩爆危险性评价的属性识别模型及工程应用[J]. 水文地质工程地质,2020,47(2):102 − 111. [HE Yifan, LI Tianbin, CAO Haiyang. Attribute recognition model of fatalness assessment of rockburst in tunnel construction and its application[J]. Hydrogeology & Engineering Geology,2020,47(2):102 − 111. (in Chinese with English abstract)

    Google Scholar

    [3] 刘国锋, 李志强, 王晓明, 等. 深埋隧道岩爆规模现场快速估算方法[J]. 中国地质灾害与防治学报,2020,31(1):57 − 64. [LIU Guofeng, LI Zhiqiang, WANG Xiaoming, et al. Field rapid estimation method for the scale of rockburst in deep tunnels[J]. The Chinese Journal of Geological Hazard and Control,2020,31(1):57 − 64. (in Chinese with English abstract)

    Google Scholar

    [4] 吴光, 肖道坦, 蒋良文, 等. 复杂山区高等级铁路选线工程地质的若干问题[J]. 西南交通大学学报,2010,45(4):527 − 532. [WU Guang, XIAO Daotan, JIANG Liangwen, et al. Problems about engineering geology of high-grade railway route selection in complicated mountainous areas[J]. Journal of Southwest Jiaotong University,2010,45(4):527 − 532. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-2724.2010.04.007

    CrossRef Google Scholar

    [5] 罗圆, 朱颖, 张小强, 等. 基于大地震风险的川藏铁路线路方案评价模型[J]. 铁道工程学报,2018,35(4):34 − 38. [LUO Yuan, ZHU Ying, ZHANG Xiaoqiang, et al. Evaluation model of Sichuan-Tibet Railway scheme based on large earthquake risk[J]. Journal of Railway Engineering Society,2018,35(4):34 − 38. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-2106.2018.04.007

    CrossRef Google Scholar

    [6] 张永双, 任三绍, 郭长宝, 等. 活动断裂带工程地质研究[J]. 地质学报,2019,93(4):763 − 775. [ZHANG Yongshuang, REN Sanshao, GUO Changbao, et al. Research on engineering geology related with active fault zone[J]. Acta Geologica Sinica,2019,93(4):763 − 775. (in Chinese with English abstract)

    Google Scholar

    [7] 杨宗佶, 丁朋朋, 王栋, 等. 川藏铁路(康定至林芝段)沿线滑坡风险分析[J]. 铁道学报,2018,40(9):97 − 103. [YANG Zongji, DING Pengpeng, WANG Dong, et al. Landslide risk analysis on Sichuan-Tibet Railway (Kangding to Nyingchi section)[J]. Journal of the China Railway Society,2018,40(9):97 − 103. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-8360.2018.09.014

    CrossRef Google Scholar

    [8] 钟卫, 李秀珍, 崔云, 等. 崩塌滑坡灾害对川藏铁路康定—昌都段选线的影响[J]. 铁道标准设计,2018,62(1):34 − 38. [ZHONG Wei, LI Xiuzhen, CUI Yun, et al. The influence of landslide and collapse hazards on railway alignment in Kangding-Changdu section of Sichuan-Tibet Railway[J]. Railway Standard Design,2018,62(1):34 − 38. (in Chinese with English abstract)

    Google Scholar

    [9] 林奎. 冰川泥石流地区铁路线路方案综合优选研究[D]. 成都: 西南交通大学, 2016.

    Google Scholar

    LIN Kui. Research on comprehensive optimization in route scheme of railway in the glacial debris flow area[D]. Chengdu: Southwest Jiaotong University , 2016. (in Chinese with English abstract)

    Google Scholar

    [10] 李雯. 岩溶地区铁路选线风险评估研究[D]. 成都: 西南交通大学, 2014.

    Google Scholar

    LI Wen. The risk assessment research on railway location in karst region[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese with English abstract)

    Google Scholar

    [11] 李国和, 李桂芳. 采空区铁路工程地质选线研究[J]. 铁道工程学报,2012,29(10):15 − 20. [LI Guohe, LI Guifang. Geological route selection of railway in mining district[J]. Journal of Railway Engineering Society,2012,29(10):15 − 20. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-2106.2012.10.004

    CrossRef Google Scholar

    [12] 黄润秋, 王贤能. 深埋隧道工程主要灾害地质问题分析[J]. 水文地质工程地质,1998,25(4):3 − 5. [HUANG Runqiu, WANG Xianneng. Analysis of the main geological hazards in deep lying tunnels[J]. Hydrogeology & Engineering Geology,1998,25(4):3 − 5. (in Chinese with English abstract)

    Google Scholar

    [13] 徐林生. 地下工程岩爆发生条件研究[J]. 重庆交通学院学报,2005,24(3):31 − 34. [XU Linsheng. Research of rockburst formation condition in underground engineering[J]. Journal of Chongqing Jiaotong University,2005,24(3):31 − 34. (in Chinese with English abstract)

    Google Scholar

    [14] 何川, 汪波, 吴德兴. 苍岭隧道岩爆特征与影响因素的相关性及防治措施研究[J]. 水文地质工程地质,2007,34(2):25 − 28. [HE Chuan, WANG Bo, WU Dexing. Research of relativity between rockburst character and influence factor and prevention measure in Cangling tunnel[J]. Hydrogeology & Engineering Geology,2007,34(2):25 − 28. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2007.02.006

    CrossRef Google Scholar

    [15] 张镜剑, 傅冰骏. 岩爆及其判据和防治[J]. 岩石力学与工程学报,2008,27(10):2034 − 2042. [ZHANG Jingjian, FU Bingjun. Rockburst and its criteria and control[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(10):2034 − 2042. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2008.10.010

    CrossRef Google Scholar

    [16] 邱道宏, 李术才, 张乐文, 等. 基于隧洞超前地质探测和地应力场反演的岩爆预测研究[J]. 岩土力学,2015,36(7):2034 − 2040. [QIU Daohong, LI Shucai, ZHANG Lewen, et al. Rockburst prediction based on tunnel geological exploration and ground stress field inverse analysis[J]. Rock and Soil Mechanics,2015,36(7):2034 − 2040. (in Chinese with English abstract)

    Google Scholar

    [17] 邢军, 王建斌, 蒋蕾, 等. 圭嘎拉高速公路隧道地应力特征及岩爆预测[J]. 水文地质工程地质,2019,46(2):170 − 178. [XING Jun, WANG Jianbin, JIANG Lei, et al. In-situ stress characteristics and rock burst prediction of the Guigala Expressway tunnel[J]. Hydrogeology & Engineering Geology,2019,46(2):170 − 178. (in Chinese with English abstract)

    Google Scholar

    [18] 徐俊帅, 徐金明, 涂齐亮. 基于地应力和岩体强度的岩爆预判[J]. 中国地质灾害与防治学报,2018,29(5):52 − 58. [XU Junshuai, XU Jinming, TU Qiliang. Prediction of rock based on field geostress and rock mass strength[J]. The Chinese Journal of Geological Hazard and Control,2018,29(5):52 − 58. (in Chinese with English abstract)

    Google Scholar

    [19] ZHOU J, LI X B, MITRI H S. Evaluation method of rockburst: State-of-the-art literature review[J]. Tunnelling and Underground Space Technology,2018,81:632 − 659.

    Google Scholar

    [20] 王元汉, 李卧东, 李启光, 等. 岩爆预测的模糊数学综合评判方法[J]. 岩石力学与工程学报,1998,17(5):493 − 501. [WANG Yuanhan, LI Wodong, LI Qiguang, et al. Method of fuzzy comprehensive evaluations for rockburst prediction[J]. Chinese Journal of Rock Mechanics and Engineering,1998,17(5):493 − 501. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.1998.05.003

    CrossRef Google Scholar

    [21] ZHOU H, CHEN S K, LI H R, et al. Rockburst prediction for hard rock and deep-lying long tunnels based on the entropy weight ideal point method and geostress field inversion: a case study of Sangzhuling Tunnel[J]. Bulletin of Engineering Geology and the Environment,2021,80(5):3885 − 3902. doi: 10.1007/s10064-021-02175-9

    CrossRef Google Scholar

    [22] 周航, 陈仕阔, 张广泽, 等. 基于功效系数法和地应力场反演的深埋长大隧道岩爆预测研究[J]. 工程地质学报,2020,28(6):1386 − 1396. [ZHOU Hang, CHEN Shikuo, ZHANG Guangze, et al. Efficiency coefficient method and ground stress field inversion for rockburst predicition in deep and long tunnel[J]. Journal of Engineering Geology,2020,28(6):1386 − 1396. (in Chinese with English abstract)

    Google Scholar

    [23] 卞爽, 于志泉, 龚俊峰, 等. 青藏高原近南北向裂谷的时空分布特征及动力学机制[J]. 地质力学学报,2021,27(2):178 − 194. [BIAN Shuang, YU Zhiquan, GONG Junfeng, et al. Spatiotemporal distribution and geodynamic mechanism of the nearly NS-trending rifts in the Tibetan Plateau[J]. Journal of Geomechanics,2021,27(2):178 − 194. (in Chinese with English abstract)

    Google Scholar

    [24] 宋章, 张广泽, 蒋良文, 等. 川藏铁路工程地质特征及地质选线原则[J]. 铁道建筑,2017,57(2):142 − 145. [SONG Zhang, ZHANG Guangze, JIANG Liangwen, et al. Engineering geological features and geological route selection principle of Sichuan-Tibet Railway[J]. Railway Engineering,2017,57(2):142 − 145. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-1995.2017.02.35

    CrossRef Google Scholar

    [25] 郭长宝, 吴瑞安, 蒋良文, 等. 川藏铁路雅安—林芝段典型地质灾害与工程地质问题[J]. 现代地质,2021,35(1):1 − 17. [GUO Changbao, WU Rui’an, JIANG Liangwen, et al. Typical geohazards and engineering geological problems along the Ya'an-Linzhi section of the Sichuan-Tibet Railway, China[J]. Geoscience,2021,35(1):1 − 17. (in Chinese with English abstract)

    Google Scholar

    [26] 陈兴强. 基于地应力侧压系数的青藏高原东南缘区域性岩爆预测研究[J]. 铁道标准设计,2020,64(7):44 − 49. [CHEN Xingqiang. Prediction of regional rock burst in southeastern Qinghai-Tibet plateau based on in-situ stress lateral pressure coefficient[J]. Railway Standard Design,2020,64(7):44 − 49. (in Chinese with English abstract)

    Google Scholar

    [27] 霍欣. 某铁路怒江至伯舒拉岭段主要工程地质问题及地质选线[J]. 铁道标准设计,2020,64(11):7 − 13. [HUO Xin. Major engineering geological problems and geological route selection of Nujiang-Bershulla section of a railway[J]. Railway Standard Design,2020,64(11):7 − 13. (in Chinese with English abstract)

    Google Scholar

    [28] 工程岩体分级标准: GB/T 50218—2014[S]. 北京: 中国计划出版社, 2014.

    Google Scholar

    Standard for engineering classification of rock mass: GB/T 50218—2014[S]. Beijing: China Planning Press, 2014. (in Chinese)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(8)

Article Metrics

Article views(832) PDF downloads(14) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint