Citation: | YE Yu, CAI Fangmin, XIE Yifan, JING Miao, LU Chunhui. Effect of the system dimensionality on variable-density solute transport[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 146-153. doi: 10.16030/j.cnki.issn.1000-3665.202103015 |
Investigation of groundwater variable-density flow and solute transport is usually limited in a 2D system. There are only a few studies performed in a 3D system. However, there are still studies showing differences in free convection between the 2D and 3D systems. This study systematically investigates the variable-density solute transport processes in the 2D and 3D systems through numerical simulations of SEAWAT-2000 and quantifies the system instability, solute spreading and dilution using the Sherwood number, spatial moments and dilution index. The results show that the separate fingers form in the 2D system while they are suppressed in the 3D system due to the enhanced diffusion. However, the instability is stronger and the convective infiltration is faster in the 3D system, which is not directly related to the fingering phenomenon. Furthermore, dilution is stronger in the 3D system, and it reaches to the maximum values at a faster rate in the 2D system. The traditional second central moment may lead to the wrong estimation of spreading and solute dilution in free convection and unstable solute transport. These outcomes help predict properly free convection and solute transport in three-dimensional natural aquifers.
[1] | STEVENS J D, SHARP J M Jr, SIMMONS C T Jr, et al. Evidence of free convection in groundwater: Field-based measurements beneath wind-tidal flats[J]. Journal of Hydrology,2009,375(3/4):394 − 409. doi: 10.1016/j.jhydrol.2009.06.035 |
[2] | VAN DAM R L, SIMMONS C T, HYNDMAN D W, et al. Natural free convection in porous media: First field documentation in groundwater[J]. Geophysical Research Letters,2009,36(11):L11403. doi: 10.1029/2008GL036906 |
[3] | VAN DER MOLEN W H, VAN OMMEN H C. Transport of solutes in soils and aquifers[J]. Journal of Hydrology,1988,100(1/2/3):433 − 451. doi: 10.1016/0022-1694(88)90195-3 |
[4] | LE BLANC D R. Sewage plume in a sand and gravel aquifer, Cape Cod, Massachusetts[R]. New York:US Geological Survey, 1984. |
[5] | KIMMEL G E, BRAIDS O C. Leachate plumes in ground water from Babylon and Islip landfills[M]. Long Island, New York: US Government Printing Office, 1980. |
[6] | 赵洁, 林锦, 吴剑锋, 等. 大连周水子海水入侵区地下水多目标优化管理模型[J]. 水文地质工程地质,2017,44(5):25 − 32. [ZHAO Jie, LIN Jin, WU Jianfeng, et al. A multi-objective simulation-optimization model for optimal control of seawater intrusion in the Zhoushuizi district of Dalian[J]. Hydrogeology & Engineering Geology,2017,44(5):25 − 32. (in Chinese with English abstract) |
[7] | 张汉雄, 胡晓农, 马震. 莱州湾潍河入海口海水入侵数值模拟[J]. 环境科学与技术, 2017, 40(增刊1): 110 − 118. ZHANG Hanxiong, HU Bill X, MA Zhen. Numerical simulation of seawater intrusion in Weihe river estuary of Laizhou bay[J]. Environmental Science & Technology, 2017, 40 (Sup 1): 110 − 118. (in Chinese with English abstract) |
[8] | 林锦, 郑春苗, 吴剑锋, 等. 基于遗传算法的变密度条件下地下水模拟优化模型[J]. 水利学报,2007,38(10):1236 − 1244. [LIN Jin, ZHENG Chunmiao, WU Jianfeng, et al. Ground water simulation optimization model based on genetic algorithm under variable density conditions[J]. Journal of Hydraulic Engineering,2007,38(10):1236 − 1244. (in Chinese with English abstract) doi: 10.3321/j.issn:0559-9350.2007.10.013 |
[9] | 郝奇琛, 崔伟哲, 黄林显. 盆地地下水密度变化对水流驱动力的影响[J]. 济南大学学报(自然科学版),2020,34(6):595 − 602. [HAO Qichen, CUI Weizhe, HUANG Linxian. Effect of groundwater density variation on driving force of water flow in inland basin[J]. Journal of University of Jinan (Science and Technology),2020,34(6):595 − 602. (in Chinese with English abstract) |
[10] | WOODING R A. Free convection of fluid in a vertical tube filled with porous material[J]. Journal of Fluid Mechanics,1962,13(1):129 − 144. doi: 10.1017/S0022112062000567 |
[11] | GEBHART B, JALURIA Y, MAHAJAN R L, et al. Buoyancy-induced flows and transport[J]. Journal of Electronic Packaging,1989,111(4):321. doi: 10.1115/1.3226555 |
[12] | 余期冲, 祝晓彬, 吴吉春, 等. 死端孔隙对溶质运移影响的实验研究[J]. 水文地质工程地质,2017,44(4):160 − 164. [YU Qichong, ZHU Xiaobin, WU Jichun, et al. Experimental research of impact of the immobile domain on the solute transport[J]. Hydrogeology & Engineering Geology,2017,44(4):160 − 164. (in Chinese with English abstract) |
[13] | 赵科锋, 王锦国, 曹慧群. 含单裂隙非饱和带中轻非水相流体修复的数值模拟[J]. 水文地质工程地质,2020,47(5):43 − 55. [ZHAO Kefeng, WANG Jinguo, CAO Huiqun. Numerical simulation of light non-aqueous phase liquids remediation in the unsaturated zone with single fractures[J]. Hydrogeology & Engineering Geology,2020,47(5):43 − 55. (in Chinese with English abstract) |
[14] | OOSTROM M, HAYWORTH J S, DANE J H, et al. Behavior of dense aqueous phase leachate plumes in homogeneous porous media[J]. Water Resources Research,1992,28(8):2123 − 2134. doi: 10.1029/92WR00711 |
[15] | SCHINCARIOL R A, SCHWARTZ F W, MENDOZA C A. On the generation of instabilities in variable density flow[J]. Water Resources Research,1994,30(4):913 − 927. doi: 10.1029/93WR02951 |
[16] | SIMMONS C T, FENSTEMAKER T R, SHARP J M Jr. Variable-density groundwater flow and solute transport in heterogeneous porous media: Approaches, resolutions and future challenges[J]. Journal of Contaminant Hydrology,2001,52:245 − 275. doi: 10.1016/S0169-7722(01)00160-7 |
[17] | 马婧, 鲁春辉, 吴吉春, 等. 一种可增加海岛地下淡水资源储量的方法研究[J]. 水文地质工程地质,2020,47(3):1 − 7. [MA Jing, LU Chunhui, WU Jichun, et al. A method for improving the fresh groundwater storage of oceanic islands[J]. Hydrogeology & Engineering Geology,2020,47(3):1 − 7. (in Chinese with English abstract) |
[18] | POST V E A, SIMMONS C T. Free convective controls on sequestration of salts into low-permeability strata: insights from sand tank laboratory experiments and numerical modelling[J]. Hydrogeology Journal,2010,18(1):39 − 54. doi: 10.1007/s10040-009-0521-4 |
[19] | KREYNS P, GENG X, MICHAEL H A. The influence of connected heterogeneity on groundwater flow and salinity distributions in coastal volcanic aquifers[J]. Journal of Hydrology,2020,586:124863. doi: 10.1016/j.jhydrol.2020.124863 |
[20] | LU C, SHI L, CHEN Y, et al. Impact of kinetic mass transfer on free convection in a porous medium[J]. Water Resources Research,2016,52:3637 − 3653. doi: 10.1002/2016WR018724 |
[21] | XIE Y Q, SIMMONS C T, WERNER A D. Speed of free convective fingering in porous media[J]. Water Resources Research,2011,47(11):W11501. |
[22] | XIE Y Q, SIMMONS C T, WERNER A D, et al. Prediction and uncertainty of free convection phenomena in porous media[J]. Water Resources Research,2012,48(2):W02535. |
[23] | KNORR B, XIE Y Q, STUMPP C, et al. Representativeness of 2D models to simulate 3D unstable variable density flow in porous media[J]. Journal of Hydrology,2016,542:541 − 551. doi: 10.1016/j.jhydrol.2016.09.026 |
[24] | 成建梅, 陈崇希, 吉孟瑞, 等. 山东烟台夹河中、下游地区海水入侵三维水质数值模拟研究[J]. 地学前缘,2001,8(1):179 − 184. [CHENG Jianmei, CHEN Chongxi, JI Mengrui, et al. Three-dimensional numerical study for salt water intrusion in multi-layered coastal aquifers in the Jahe river basin, Shandong Province, China[J]. Earth Science Frontiers,2001,8(1):179 − 184. (in Chinese with English abstract) doi: 10.3321/j.issn:1005-2321.2001.01.044 |
[25] | 杨林, 黄栋声, 李海良, 等. 滨海盆地变密度地下水流与溶质运移三维耦合数值模型研究[J]. 水利水电技术,2020,51(3):116 − 123. [YANG Lin, HUANG Dongsheng, LI Hailiang, et al. Study on three-dimensional numerical model of variable-density groundwater flow and solute transport in the coastal basin[J]. Water Resources and Hydropower Engineering,2020,51(3):116 − 123. (in Chinese with English abstract) |
[26] | SIMMONS C T, KUZNETSOV A V, NIELD D A. Effect of strong heterogeneity on the onset of convection in a porous medium: Importance of spatial dimensionality and geologic controls[J]. Water Resources Research,2010,46(9):W09539. |
[27] | DANE J H, GUEVEN O, OOSTROM M, et al. Dense aqueous phase contaminant plume behaviour in porous media near the groundwater table [C]//Proceedings of the Helsinki Conference. Helsinki: International Association of Hydrological Sciences, 1994. |
[28] | SIMPSON M J, CLEMENT T P. Theoretical analysis of the worthiness of Henry and Elder problems as benchmarks of density-dependent groundwater flow models[J]. Advances in Water Resources,2003,26(1):17 − 31. doi: 10.1016/S0309-1708(02)00085-4 |
[29] | ZHANG H B, SCHWARTZ F W. Multispecies contaminant plumes in variable density flow systems[J]. Water Resources Research,1995,31(4):837 − 847. doi: 10.1029/94WR02567 |
[30] | AL-MAKTOUMI A, LOCKINGTON D A, VOLKER R E. SEAWAT 2000: modelling unstable flow and sensitivity to discretization levels and numerical schemes[J]. Hydrogeology Journal,2007,15(6):1119 − 1129. doi: 10.1007/s10040-007-0164-2 |
[31] | LANGEVIN C D, SHOEMAKER W B, GUO W. Modflow-2000, the US geological survey modular ground-water model-documentation of the SEAWAT-2000 version with the variable-density flow process (VDF) and the integrated MT3DMS transport process (IMT) [R]. New York:US Geological Survey, 2003. |
[32] | KITANIDIS P K. The concept of the dilution index[J]. Water Resources Research,1994,30(7):2011 − 2026. doi: 10.1029/94WR00762 |
[33] | HORTON C W, ROGERS F T. Convection currents in a porous medium[J]. Journal of Applied Physics,1945,16(6):367 − 370. doi: 10.1063/1.1707601 |
[34] | LAPWOOD E R. Convection of a fluid in porous medium[J]. Proceedings of the Cambridge Philosophical Society,1948,44:508 − 521. doi: 10.1017/S030500410002452X |
Sketch of the numerical model
Concentration distributions of the solute plume in the 5th year
Solute plume distribution on the 2D x-z cross-section and the 3D x-z central cross-section at different time points
Change of Sh with time
Change of centroid position with time
Change of the second central moment with time
Changes of the dilution index and reaction ratio with time