2022 Vol. 49, No. 1
Article Contents

LIU Ling, CHEN Jian, NIU Haobo, LI Lu, YIN Leyi, WEI Yaqiang. Numerical simulation of three-dimensional soil-groundwater coupled chromium contamination based on FEFLOW[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 164-174. doi: 10.16030/j.cnki.issn.1000-3665.202102008
Citation: LIU Ling, CHEN Jian, NIU Haobo, LI Lu, YIN Leyi, WEI Yaqiang. Numerical simulation of three-dimensional soil-groundwater coupled chromium contamination based on FEFLOW[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 164-174. doi: 10.16030/j.cnki.issn.1000-3665.202102008

Numerical simulation of three-dimensional soil-groundwater coupled chromium contamination based on FEFLOW

More Information
  • Soil-groundwater coupled numerical simulation is the main method to quantitatively describe the flow and solute transport in a groundwater system. The existing researches on a large-scale site are limited by the difficulty of data acquisition and the amount of simulation calculation. Most of them divide the soil and groundwater into two systems, and it is of great significance to study the soil and groundwater as a whole system. In order to accurately depict the migration of contaminants in the soil-groundwater system of the actual site and reveal the parameter sensitivity of the variable saturation reaction solute transport model, in this paper, a 3D soil-groundwater model is established by using the Galerkin finite element method to quantitatively describe the migration of hexavalent chromium in soil-groundwater based on the data obtained from field tests and previous studies. The fluctuation of phreatic surface in the soil-groundwater system is studied by changing the recharge conditions. The effects of retardation coefficient and reaction constant on solute transport are discussed. The results show that in the soil, the maximum horizontal migration distance of contaminants is 300 m to the southeast of the site; the maximum distribution area of contamination halo in groundwater is about 1.632 km2; the vertical hexavalent chromium in soil only needs 15.6 h to infiltrate into the phreatic surface, and penetrates through the aquifer in the sixth day. When the groundwater level fluctuates with the change of recharge, hexavalent chromium in groundwater will enter the soil with the water flow, affecting the distribution of contamination in the soil. The discussion of solute transport parameters shows that when the reaction constant increases from 0 to 10-6s-1, the concentration of the contaminants in groundwater decreases by about 2000 mg/L at the boundary of the migration site, which makes it difficult to migrate to the Lianshui River. The numerical model based on FEFLOW can solve the problem of poor interaction between systems and provide more accurate simulation results.

  • 加载中
  • [1] 陈晨, 胡立新, 叶力. 清洁场项目地下水污染迁移研究[J]. 世界生态学,2018,7(2):80 − 88. [CHEN Chen, HU Lixin, YE Li. Study on groundwater pollution transfer in clean field project[J]. International Journal of Ecology,2018,7(2):80 − 88. (in Chinese with English abstract) doi: 10.12677/IJE.2018.72012

    CrossRef Google Scholar

    [2] HAVARD P L, PRASHER S O, BONNELL R B. LINKFLOW a water flow computer model for water table management: Part1. Model development[J]. Transactions of the ASAE,1995,38(2):481 − 488. doi: 10.13031/2013.27856

    CrossRef Google Scholar

    [3] FACCHI A, ORTUANI B, MAGGI D, et al. Coupled SVAT-groundwater model for water resources simulation in irrigated alluvial plains[J]. Environmental Modelling & Software,2004,19(11):1053 − 1063.

    Google Scholar

    [4] TWARAKAVI N K C, ŠIMUNEK J, SOPHIA S. Evaluating interactions between groundwater and vadose zone using the HYDRUS-based flow package for MODFLOW[J]. Vadose Zone Journal,2008,7(2):757 − 768. doi: 10.2136/vzj2007.0082

    CrossRef Google Scholar

    [5] BERGVALL M. Hydrogeological modeling to improve remediation strategies for a drinking water aquifer contaminated by an aqueous phase liquid[D]. Umea: Swedish University of Agricultural Sciences, 2011.

    Google Scholar

    [6] 张旭洋, 林青, 黄修东, 等. 大沽河流域土壤水-地下水流耦合模拟及补给量估算[J]. 土壤学报,2019,56(1):101 − 113. [ZHANG Xuyang, LIN Qing, HUANG Xiudong, et al. Soil water groundwater coupling simulation and recharge estimation in Dagu River Basin[J]. Acta pedologica Sinica,2019,56(1):101 − 113. (in Chinese with English abstract)

    Google Scholar

    [7] NISWONGER R G, PRUDIC D E. Modeling variably saturated flow using kinematic waves in MODFLOW[J]. Groundwater Recharge in a Desert Environment: The Southwestern United States, 2004, 9(1):101 − 112.

    Google Scholar

    [8] NISWONGER R G, PRUDIC D E , REGAN R S. Documentation of the unsaturated-zone flow (UZF1) package for modeling unsaturated flow between the land surface and the water table with MODFLOW-2005[R]. Reston: U. S. Geological Survey Techniques and Methods, 2006.

    Google Scholar

    [9] YAKIREVICH A, BORISOV V, SOREK S. A quasi three-dimensional model for flow and transport in unsaturated and saturated zones: 1. Implementation of the quasi two-dimensional case[J]. Advances in Water Resources,1998,21(8):679 − 689. doi: 10.1016/S0309-1708(97)00031-6

    CrossRef Google Scholar

    [10] 林琳, 杨金忠, 史良胜, 等. 区域饱和-非饱和地下水流运动数值模拟[J]. 武汉大学学报(工学版),2005,38(6):53 − 58. [LIN Lin, YANG Jinzhong, SHI Liangsheng, et al. Saturated and unsaturated groundwater flow numerical simulation in large scale zone[J]. Engineering Journal of Wuhan University,2005,38(6):53 − 58. (in Chinese with English abstract)

    Google Scholar

    [11] 查元源, 朱焱, 杨金忠. 基于改进积分型Richards方程的区域地下水饱和-非饱和水流耦合模型[J]. 四川大学学报(工程科学版),2013,45(1):107 − 116. [ZHA Yuanyuan, ZHU Yan, YANG Jinzhong. A regional coupled groundwater model for unsaturated-saturated flow based on modified integrated richards equation[J]. Journal of Sichuan University (Engineering Science Edition),2013,45(1):107 − 116. (in Chinese with English abstract)

    Google Scholar

    [12] 查元源. 饱和-非饱和水流运动高效数值算法研究及应用[D]. 武汉: 武汉大学, 2014: 5 − 7.

    Google Scholar

    ZHA Yuanyuan. Research on cost-effective algorithm for unsaturated-saturated flow and its application[D]. Wuhan: Wuhan University, 2014: 5 − 7. (in Chinese with English abstract)

    Google Scholar

    [13] 朱焱. 区域拟三维饱和-非饱和水流与溶质运移模型研究与应用[D]. 武汉: 武汉大学, 2013: 5 − 7.

    Google Scholar

    ZHU Yan. Study on quasi-3D water flow and solute transport model in regional scales and its application[D]. Wuhan: Wuhan University, 2013: 5 − 7. (in Chinese with English abstract)

    Google Scholar

    [14] ZHOU Y, WANG Y X, ZWAHLEN F , et al. FEFLOW modeling of groundwater-surface water system of Maozui area of Jianghan Plain, Central China[C] //The 7th International Conference on Calibration and Reliability Groundwater Modeling(modelCARE2009). Wuhan, 2009: 241 − 244.

    Google Scholar

    [15] HUO Z L, FENG S Y, KANG S Z, et al. Simulation of effects of agricultural activities on groundwater level by combining FEFLOW and GIS[J]. New Zealand Journal of Agricultural Research,2007,50(5):839 − 846. doi: 10.1080/00288230709510358

    CrossRef Google Scholar

    [16] 胡健, 张祥达, 魏志诚. 基于FEFLOW在地下水数值模拟中的应用综述[J]. 地下水,2020,42(1):9 − 13. [HU Jian, ZHANG Xiangda, WEI Zhicheng. Literature review of the groundwater numerical simulation method based on the application of FEFLOW[J]. Ground water,2020,42(1):9 − 13. (in Chinese with English abstract)

    Google Scholar

    [17] DIERSCH H J G, PERROCHET P. On the primary variable switching technique for simulating unsaturated-saturated flows[J]. Advances in Water Resources,1999,23(3):271 − 301.

    Google Scholar

    [18] HUYAKORN P S, MERCER J W, WARD D S. Finite element matrix and mass balance computational schemes for transport in variably saturated porous media[J]. Water Resources Research,1985,21(3):346 − 358. doi: 10.1029/WR021i003p00346

    CrossRef Google Scholar

    [19] DIERSCH H J G . Finite element modeling of flow, mass and heat transport in porous and fractured media[M]. Berlin: Groundwater Modelling Centre DHI-WASY GmbH, 2014: 1 − 19.

    Google Scholar

    [20] PANDAY S , HUYAKORN P S , THERRIEN R , et al. Improved three-dimensional finite-element techniques for field simulation of variably saturated flow and transport[J]. Journal of Contaminant Hydrology,1993, 12(1/2): 3 − 33.

    Google Scholar

    [21] ŠIMŮNEK J, ŠEJNA M, SAITO H , et al. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media[R]. California: University of California Riverside, 2008.

    Google Scholar

    [22] 陈彦, 吴吉春. 含水层渗透系数空间变异性对地下水数值模拟的影响[J]. 水科学进展,2005,16(4):483 − 487. [CHEN Yan, WU Jichun. Effect of the spatial variability of hydraulic conductivity in aquifer on the numerical simulation of groundwater[J]. Advances in water science,2005,16(4):483 − 487. (in Chinese with English abstract)

    Google Scholar

    [23] 刘兆昌. 地下水系统的污染与控制[M]. 北京: 中国环境科学出版社, 1991.

    Google Scholar

    LIU Zhaochang. Pollution and control of groundwater system[M]. Beijing: China Environmental Science Press, 1991. (in Chinese)

    Google Scholar

    [24] SEFEROU P , SOUPIOS P, KOURGIALAS N N, et al. Olive-oil mill wastewater transport under unsaturated and saturated laboratory conditions using the geoelectrical resistivity tomography method and the FEFLOW model[J]. Hydrogeology Journal,2013,21(6):1219 − 1234. doi: 10.1007/s10040-013-0996-x

    CrossRef Google Scholar

    [25] GELHAR L W, WELTY C, REHFELDT K R. A critical review of data on field-scale dispersion in aquifers[J]. Water Resources Research,1992,28(7):1955 − 1974. doi: 10.1029/92WR00607

    CrossRef Google Scholar

    [26] 孙讷正. 地下水污染-数学模型和数值方法[M]. 北京: 地质出版社, 1989: 33 − 36.

    Google Scholar

    SUN Nezheng. Groundwater pollution mathematical model and numerical method[M]. Beijing: Geological Publishing House, 1989: 33 − 36. (in Chinese)

    Google Scholar

    [27] 王焰新. 地下水污染与防治[M]. 北京: 高等教育出版社, 2007: 19 − 32.

    Google Scholar

    WANG Yanxin. Groundwater pollution and control[M]. Beijing: Higher Education Press, 2007: 19 − 32. (in Chinese)

    Google Scholar

    [28] 姜利国, 梁冰. 非饱和-饱和区域中重金属污染物运移数值模拟[J]. 辽宁工程技术大学学报:自然科学版,2007,26(增刊 2):74 − 76. [JIANG Liguo,LIANG Bing. Numerical analog simulation of heavy metal pollution transport in variably saturated flow[J]. Journal of Liaoning Technical University(Natural Science Edition),2007,26(Sup 2):74 − 76. (in Chinese with English abstract)

    Google Scholar

    [29] 张俊杰. 包气带中六价铬运移规律的离心试验研究[D]. 成都: 成都理工大学, 2018.

    Google Scholar

    ZHANG Junjie. Study on the migration law of hexavalent chromium in unsaturated zone through centrifugal test[D]. Chengdu: Chengdu University of Technology, 2018.(in Chinese with English abstract)

    Google Scholar

    [30] WENG C H, HUANG C P, ALLEN H E, et al. Chromium leaching behavior in soil derived from chromite ore processing waste[J]. The Science of The Total Environment,1994,154(1):71 − 86. doi: 10.1016/0048-9697(94)90615-7

    CrossRef Google Scholar

    [31] KHAN A A, MUTHUKRISHNAN M, GUHA B K. Sorption and transport modeling of hexavalent chromium on soil media[J]. Journal of Hazardous Materials,2010,174(1−3):444 − 454. doi: 10.1016/j.jhazmat.2009.09.073

    CrossRef Google Scholar

    [32] 谢水波, 陈泽昂, 张晓健, 等. 宏观弥散度和阻滞系数对地下水中核素迁移模拟的影响[J]. 湖南大学学报(自然科学版),2007,34(5):78 − 82. [XIE Shuibo, CHEN Zeang, ZHANG Xiaojian, et al. Effect of macrodispersivity and retardation coefficient on retardation coefficient on radionuclide migration simulation[J]. Journal of Hunan University(Natural Sciences),2007,34(5):78 − 82. (in Chinese with English abstract)

    Google Scholar

    [33] KOTAS J , STASICKA Z. Chromium occurrence in the environment and methods of its speciation[J]. Environmental Pollution,2000,107(3):263 − 283.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Tables(4)

Article Metrics

Article views(2896) PDF downloads(223) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint