2021 Vol. 48, No. 3
Article Contents

GUO Haipeng, LI Wenpeng, WANG Liya, CHEN Ye, ZANG Xisheng, WANG Yunlong, ZHU Juyan, BIAN Yueyue. Present situation and research prospects of the land subsidence driven by groundwater levels in the North China Plain[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 162-171. doi: 10.16030/j.cnki.issn.1000-3665.202012037
Citation: GUO Haipeng, LI Wenpeng, WANG Liya, CHEN Ye, ZANG Xisheng, WANG Yunlong, ZHU Juyan, BIAN Yueyue. Present situation and research prospects of the land subsidence driven by groundwater levels in the North China Plain[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 162-171. doi: 10.16030/j.cnki.issn.1000-3665.202012037

Present situation and research prospects of the land subsidence driven by groundwater levels in the North China Plain

  • The North China Plain (NCP) has the greatest area of severe land subsidence, accounting for more than 80% of the total area of severe land subsidence in China. The situation of prevention and control of land subsidence is urgent. Targeted researches are needed to carry out to provide scientific basis for effective prevention and control of land subsidence. A relatively complete land subsidence monitoring network is established in the NCP, and the current status and evolution of land subsidence are basically grasped. However, due to the limitation of the complex influencing factors and large variation in time and space of aquifer systems, the researches on groundwater-derived deformation characteristics and mechanism of soil layers are relatively weak so far, restricting the scientific evaluation of the development trend of land subsidence and its forecast and early warning. Based on summarizing the research progress of land subsidence at home and abroad, and analysing the current situation and development trend of land subsidence in the NCP with monitoring data of high temporal and spatial resolutions, the research directions of land subsidence under the influence of groundwater level changes are proposed. The land subsidence in the NCP was alleviated, and was effectively controlled in the downtown areas of the major cities such as Tianjin, Cangzhou and Hengshui. However, on the whole, the land subsidence in the NCP, especially in the Hebei Plain, is still in a relatively rapid development stage, because the exploitation of groundwater in the agricultural irrigation areas cannot be effectively controlled. Future researches on land subsidence in the NCP should focus on the land subsidence mechanisms and prediction and early warning, the law of soil deformation driven by groundwater level rise and its impact on the environment, the attributes of groundwater resources in the subsidence areas, and the relationship between geothermal development and land subsidence.

  • 加载中
  • [1] HE G F, YAN X X, ZHANG Y, et al. Experimental study on the vertical deformation of soils due to groundwater withdrawal[J]. International Journal of Geomechanics,2020,20(7):04020076. doi: 10.1061/(ASCE)GM.1943-5622.0001709

    CrossRef Google Scholar

    [2] 郭海朋, 白晋斌, 张有全,等. 华北平原典型地段地面沉降演化特征与机理研究[J]. 中国地质,2017,44(6):1115 − 1127. [GUO Haipeng, BAI Jinbin, ZHANG Youquan, et al. The evolution characteristics and mechanism of the land subsidence in typical areas of the North China Plain[J]. Geology in China,2017,44(6):1115 − 1127. (in Chinese with English abstract)

    Google Scholar

    [3] 张云, 薛禹群, 吴吉春, 等. 饱和黏性土蠕变变形试验研究[J]. 岩土力学,2011,32(3):672 − 676. [ZHANG Yun, XUE Yuqun, WU Jichun, et al. Experimental study of creep deformation of saturated clay[J]. Rock and Soil Mechanics,2011,32(3):672 − 676. (in Chinese with English abstract)

    Google Scholar

    [4] SIVASITHAMPARAM N, KARSTUNEN M, BONNIER P. Modelling creep behavior of anisotropic soft soils[J]. Computers & Geotechnics,2015,69:46 − 57.

    Google Scholar

    [5] SEXTON B G, MCCABE B A, KARSTUNEN M, et al. Stone column settlement performance in structured anisotropic clays: the influence of creep[J]. Journal of Rock Mechanics and Geotechnical Engineering,2016,8(5):672 − 688. doi: 10.1016/j.jrmge.2016.05.004

    CrossRef Google Scholar

    [6] ENOMOTO T, KOSEKI J, TATSUOKA F, et al. Creep failure of sands exhibiting various viscosity types and its simulation[J]. Soils & Foundations,2015,55(6):1346 − 1363.

    Google Scholar

    [7] 主灿, 张云, 何国峰, 等. 天津滨海新区抽水引起地面沉降现场试验研究[J]. 水文地质工程地质,2018,45(2):159 − 164. [ZHU Can, ZHANG Yun, HE Guofeng, et al. In-situ tests of land subsidence caused by pumping in the Tianjin Binhai New Area[J]. Hydrogeology & Engineering Geology,2018,45(2):159 − 164. (in Chinese with English abstract)

    Google Scholar

    [8] SHEARER T R. A numerical model to calculate land subsidence, applied at Hangu in China[J]. Engineering Geology,1998,49(2):85 − 93. doi: 10.1016/S0013-7952(97)00074-4

    CrossRef Google Scholar

    [9] AUGUSTESEN A, LIINGAARD M, LADE P V. Evaluation of time-dependent behavior of soils[J]. International Journal of Geomechanics,2004,4(3):137 − 156. doi: 10.1061/(ASCE)1532-3641(2004)4:3(137)

    CrossRef Google Scholar

    [10] ZHANG Y, XUE Y Q, WU J C, et al. Mechanical modeling of aquifer sands under long-term groundwater withdrawal[J]. Engineering Geology,2012,125:74 − 80. doi: 10.1016/j.enggeo.2011.11.006

    CrossRef Google Scholar

    [11] WANG F, MIAO L C, LU W H. Sand creep as a factor in land subsidence during groundwater level recovery in the southern Yangtze River delta, China[J]. Bulletin of Engineering Geology and the Environment,2013,72:273 − 283. doi: 10.1007/s10064-013-0474-7

    CrossRef Google Scholar

    [12] 薛禹群, 张云. 长江三角洲南部地面沉降与地裂缝[J]. 华东地质,2016,37(1):1 − 9. [XUE Yuqun, ZHANG Yun. Land subsidence and land fissures in the southern Yangtze River Delta[J]. East China Geology,2016,37(1):1 − 9. (in Chinese with English abstract)

    Google Scholar

    [13] 李玉岐, 张啸地, 翁天泉, 等. 排灌水引起砂土层沉降的宏细观试验分析[J]. 上海大学学报(自然科学版),2015,21(6):795 − 802. [LI Yuqi, ZHANG Xiaodi, WENG Tianquan, et al. Macro-meso test analysis of sand subsidence caused by withdrawing and recharging water[J]. Journal of Shanghai University (Natural Science),2015,21(6):795 − 802. (in Chinese with English abstract)

    Google Scholar

    [14] CORAPCIOGLU M Y, BRUTSAERT W. Viscoelastic aquifer model applied to subsidence due to pumping[J]. Water Resources Research,1977,13(3):597 − 604. doi: 10.1029/WR013i003p00597

    CrossRef Google Scholar

    [15] 吴林高, 缪俊发. 抽灌水作用下土层变形及应力-应变本构律的研究[J]. 地球科学: 中国地质大学学报,1995,20(5):581 − 588. [WU Lingao, MIAO Junfa. Soil layer deformation and determination of the constitutive law on the stress-strain of soils under pumping-recharge[J]. Journal of Earth Science: Journal of China University of Geosciences,1995,20(5):581 − 588. (in Chinese with English abstract)

    Google Scholar

    [16] YE S J, XUE Y Q, WU J C, et al. Modeling visco-elastic-plastic deformation of soil with modified Merchant model[J]. Environmental Earth Sciences,2012,66(5):1497 − 1504. doi: 10.1007/s12665-011-1389-x

    CrossRef Google Scholar

    [17] GAMBOLATI G, TEATINI P. Geomechanics of subsurface water withdrawal and injection[J]. Water Resources Research,2015,51(6):3922 − 3955. doi: 10.1002/2014WR016841

    CrossRef Google Scholar

    [18] TSAI, M S, HSU K C. Identifying poromechanism and spatially varying parameters of aquifer compaction in Choushui River alluvial fan, Taiwan[J]. Engineering Geology,2018,245:20 − 32. doi: 10.1016/j.enggeo.2018.07.025

    CrossRef Google Scholar

    [19] RILEY F S. Analysis of borehole extensometer data from central California[J]. Land subsidence,1969,2:423 − 431.

    Google Scholar

    [20] CLEVELAND T G, BRAVO R, ROGERS J R. Storage coefficients and vertical hydraulic conductivities in aquitards using extensometer and hydrograph data[J]. Groundwater,1992,30(5):701 − 708. doi: 10.1111/j.1745-6584.1992.tb01556.x

    CrossRef Google Scholar

    [21] 叶淑君, 薛禹群, 张云, 等. 上海区域地面沉降模型中土层变形特征研究[J]. 岩土工程学报,2005,27(2):140 − 147. [YE Shujun, XUE Yuqun, ZHANG Yun, et al. Study on the deformation characteristics of soil layers in regional land subsidence model of Shanghai[J]. Chinese Journal of Geotechnical Engineering,2005,27(2):140 − 147. (in Chinese with English abstract)

    Google Scholar

    [22] ZHANG Y Q, GONG H L, GU Z Q, et al. Characterization of land subsidence induced by groundwater withdrawals in the plain of Beijing city, China[J]. Hydrogeology Journal,2014,22(2):397 − 409. doi: 10.1007/s10040-013-1069-x

    CrossRef Google Scholar

    [23] AMIGHPEY M, ARABI S. Studying land subsidence in Yazd province, Iran, by integration of InSAR and levelling measurements[J]. Remote Sensing Applications: Society and Environment,2016,4:1 − 8. doi: 10.1016/j.rsase.2016.04.001

    CrossRef Google Scholar

    [24] CASTELLAZZI P, MARTEL R, GALLOWAY D L. Assessing Groundwater Depletion and Dynamics Using GRACE and InSAR: Potential and Limitations[J]. Groundwater,2016,54(6):768 − 780. doi: 10.1111/gwat.12453

    CrossRef Google Scholar

    [25] CHAUSSARD E, MILILLO P, BÜRGMANN R, et al. Remote sensing of ground deformation for monitoring groundwater management practices: Application to the Santa Clara Valley during the 2012–2015 California drought[J]. Journal of Geophysical Research: Solid Earth,2017,122(10):8566 − 8582. doi: 10.1002/2017JB014676

    CrossRef Google Scholar

    [26] ZHOU H, GÓMEZ-HERNÁNDEZ J J, LI L. Inverse methods in hydrogeology: Evolution and recent trends[J]. Advances in Water Resources,2014,63:22 − 37. doi: 10.1016/j.advwatres.2013.10.014

    CrossRef Google Scholar

    [27] HOFFMANN J, GALLOWAY D L, ZEBKER H A. Inverse modeling of interbed storage parameters using land subsidence observations, Antelope Valley, California[J]. Water Resources Research,2003,39(2):SBH 5-1 − 5-10.

    Google Scholar

    [28] REEVES J A, KNIGHT R, ZEBKER H A, et al. Estimating temporal changes in hydraulic head using InSAR data in the San Luis Valley, Colorado[J]. Water Resources Research,2014,50(5):4459 − 4473. doi: 10.1002/2013WR014938

    CrossRef Google Scholar

    [29] BÉJAR-PIZARRO M, MARTÍN P E, HERRERA G, et al. Evaluation of the potential of InSAR time series to study the spatio-temporal evolution of piezometric levels in the Madrid aquifer[J]. Proceedings of the International Association of Hydrological Sciences,2015,372:29 − 32. doi: 10.5194/piahs-372-29-2015

    CrossRef Google Scholar

    [30] ZHUANG C, ZHOU Z F, ILLMAN W A, et al. Geostatistical inverse modeling for the characterization of aquitard heterogeneity using long-term multi-extensometer data[J]. Journal of Hydrology,2019,578:12024.

    Google Scholar

    [31] ZHUANG C, ZHOU Z F, ILLMAN W A, et al. Parameter estimation of an overconsolidated aquitard subjected to periodic hydraulic head variations within adjacent aquifers[J]. Journal of Hydrology,2020,583:124555.

    Google Scholar

    [32] POETER E P, HILL M C. Documentation of UCODE: A Computer Code for Universal Inverse Modeling[R]. Denver, Colorado: DIANE Publishing. , 1998.

    Google Scholar

    [33] ZHANG M, BURBEY T J, NUNES VDS, et al. A new zonation algorithm with parameter estimation using hydraulic head and subsidence observations[J]. Groundwater,2014,52(4):514 − 524. doi: 10.1111/gwat.12102

    CrossRef Google Scholar

    [34] ZHANG M, BURBEY T J. Inverse modelling using PS‐InSAR data for improved land subsidence simulation in Las Vegas Valley, Nevada[J]. Hydrological Processes,2016,30:4494 − 4516. doi: 10.1002/hyp.10945

    CrossRef Google Scholar

    [35] GAMBOLATI G, FREZZE R A. Mathematical simulation of the subsidence of Venice: Theory[J]. Water Resource Research,1973,9(3):721 − 733. doi: 10.1029/WR009i003p00721

    CrossRef Google Scholar

    [36] 于军, 吴吉春, 叶淑君, 等. 苏锡常地区非线性地面沉降耦合模型研究[J]. 水文地质工程地质,2007,34(5):11 − 16. [YU Jun, WU Jichun, YE Shujun, et al. Research on nonlinear coupled modeling of land subsidence in Suzhou, Wuxi and Changzhou areas, China[J]. Hydrogeology & Engineering Geology,2007,34(5):11 − 16. (in Chinese with English abstract)

    Google Scholar

    [37] THOANG T T, GIAO P H. Subsurface characterization and prediction of land subsidence for HCM City, Vietnam[J]. Engineering Geology,2015,199:107 − 124. doi: 10.1016/j.enggeo.2015.10.009

    CrossRef Google Scholar

    [38] MAHMOUDPOUR M, KHAMEHCHIYAN M, NIKUDEL M R, et al. Numerical simulation and prediction of regional land subsidence caused by groundwater exploitation in the southwest plain of Tehran, Iran[J]. Engineering Geology,2016,201:6 − 28. doi: 10.1016/j.enggeo.2015.12.004

    CrossRef Google Scholar

    [39] 刘蓉, 曹国亮, 赵勇, 等. 地面沉降对含水层参数及给水能力的影响研究[J]. 水文地质工程地质,2019,46(3):47 − 54. [LIU Rong, CAO Guoliang, ZHAO Yong, et al. A study of the influence of land subsidence on hydraulic parameters and water supply capacity[J]. Hydrogeology & Engineering Geology,2019,46(3):47 − 54. (in Chinese with English abstract)

    Google Scholar

    [40] TSAI T L. A coupled one-dimensional viscoelastic-plastic model for aquitard consolidation caused by hydraulic head variations in aquifers[J]. Hydrological Processes,2015,29:4779 − 4793. doi: 10.1002/hyp.10524

    CrossRef Google Scholar

    [41] ASADI R, ATAIE-ASHTIANI B. Numerical modeling of subsidence in saturated porous media: A mass conservative method[J]. Journal of Hydrology,2016,54:423 − 436.

    Google Scholar

    [42] HERNANDEZ-MARIN M, BURBEY T J. Fault-controlled deformation and stress from pumping-induced groundwater flow[J]. Journal of Hydrology,2012,428 − 429:80 − 93. doi: 10.1016/j.jhydrol.2012.01.025

    CrossRef Google Scholar

    [43] 骆祖江, 王琰, 田小伟, 等. 沧州市地下水开采与地面沉降地裂缝模拟预测[J]. 水利学报,2013,44(2):198 − 204. [LUO Zujiang, WANG Yan, TIAN Xiaowei, et al. Simulating and forecasting of groundwater exploitation, land subsidence and ground fissures in Cangzhou City[J]. Journal of Hydraulic Engineering,2013,44(2):198 − 204. (in Chinese with English abstract)

    Google Scholar

    [44] 贾超, 张国荣, 王嘉斌, 等. 地下水开采诱发地面沉降研究及其工程应用:以山东德州地区为例[J]. 地球科学与环境学报,2015,37(4):102 − 110. [JIA Chao, ZHANG Guorong, WANG Jiabin, et al. Study on land subsidence induced by groundwater extraction and its engineering application: Taking Dezhou area of Shandong as an example[J]. Journal of Earth Sciences and Environment,2015,37(4):102 − 110. (in Chinese with English abstract)

    Google Scholar

    [45] CASTELLETTO N, GAMBOLATI G, TEATINI P. A coupled MFE poromechanical model of a large-scale load experiment at the coastland of Venice[J]. Computers & Geosciences,2015,19:17 − 29.

    Google Scholar

    [46] YE S J, LUO Y, WU J C, et al. Three-dimensional numerical modeling of land subsidence in Shanghai, China[J]. Hydrogeology Journal,2016,24(3):695 − 709. doi: 10.1007/s10040-016-1382-2

    CrossRef Google Scholar

    [47] 骆勇, 祝晓彬, 郭飞, 等. 不同方法求解疏排水引起的地面沉降对比研究[J]. 水文地质工程地质,2018,45(5):150 − 157. [LUO Yong, ZHU Xiaobin, GUO Fei, et al. A comparative study of land subsidence caused by drainage with different methods[J]. Hydrogeology & Engineering Geology,2018,45(5):150 − 157. (in Chinese with English abstract)

    Google Scholar

    [48] WANG S J, HSU K C. Dynamic interactions of groundwater flow and soil deformation in randomly heterogeneous porous media[J]. Journal of Hydrology,2013,499:50 − 60. doi: 10.1016/j.jhydrol.2013.06.047

    CrossRef Google Scholar

    [49] PHAM H T, RÜHAAK W, SCHUSTER V, et al. Fully hydro-mechanical coupled Plug-in (SUB+) in FEFLOW for analysis of land subsidence due to groundwater extraction[J]. SoftwareX,2019,9:15 − 19. doi: 10.1016/j.softx.2018.11.004

    CrossRef Google Scholar

    [50] GUO H P, JIAO J J, WEEKS E P. Rain-induced subsurface airflow and Lisse effect[J]. Water Resources Research,2008,44:W07409.

    Google Scholar

    [51] GUO H P, JIAO J J. Theoretical study of the impact of tide-induced airflow on hydraulic head in air-confined coastal aquifers[J]. Hydrological Sciences Journal,2010,55(3):435 − 445. doi: 10.1080/02626661003739959

    CrossRef Google Scholar

    [52] HU L, WINTERFELD P H, FAKCHAROENPHOL P, et al. A novel fully-coupled flow and geomechanics model in enhanced geothermal reservoirs[J]. Journal of Petroleum Science and Engineering,2013,107:1 − 11. doi: 10.1016/j.petrol.2013.04.005

    CrossRef Google Scholar

    [53] 熊小锋, 施小清, 吴剑锋, 等. 弹塑性变形条件下抽水引起的地面沉降三维数值模拟[J]. 水文地质工程地质,2017,44(2):151 − 159. [XIONG Xiaofeng, SHI Xiaoqing, WU Jianfeng, et al. 3D numerical simulation of elasto-plastic land subsidence induced by groundwater pumping[J]. Hydrogeology & Engineering Geology,2017,44(2):151 − 159. (in Chinese with English abstract)

    Google Scholar

    [54] GUO H P, ZHANG Z C, CHENG G M, et al. Groundwater-derived land subsidence in the North China Plain[J]. Environmental Earth Sciences,2015,74(2):1415 − 1427. doi: 10.1007/s12665-015-4131-2

    CrossRef Google Scholar

    [55] 王丽亚, 郭海朋. 连续干旱对北京平原区地下水的影响[J]. 水文地质工程地质,2015,42(1):1 − 6. [WANG Liya, GUO Haipeng. Effects of continuous drought on groundwater in Beijing plain[J]. Hydrogeology & Engineering Geology,2015,42(1):1 − 6. (in Chinese with English abstract)

    Google Scholar

    [56] 朱菊艳, 郭海朋, 李文鹏, 等. 华北平原地面沉降与深层地下水开采关系[J]. 南水北调与水利科技,2014,12(3):165 − 169. [ZHU Juyan, GUO Haipeng, LI Wenpeng, et al. Relation between land subsidence and deep groundwater yield in the North China Plain[J]. South-to-North Water Transfers and Water Science & Technology,2014,12(3):165 − 169. (in Chinese with English abstract)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(5329) PDF downloads(317) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint