Citation: | GUO Wei, YUAN Fang, ZHANG Jia, XIE Bin, FENG Xueyang, CHEN Honghan. In-situ Fenton oxidation experiment of compound benzene pollutants in high salt and strong acid groundwater[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 182-189. doi: 10.16030/j.cnki.issn.1000-3665.202012021 |
In the process of in-situ oxidation, the physical and chemical characteristics of actual ground water and water-bearing media are the important factors affecting the oxidation effect, but there are few specific studies on this effect at present. The actual high-salt and strong-acid compound benzene contaminated groundwater in a certain site is used as the research object, and 2-nitro-4-methoxyaniline (2-N) and 3-nitro-4-methoxyaniline (3-N) in groundwater are characteristic pollutants. The in-situ oxidation characteristics of Fenton’s reagent are explored, and the liquid environmental factors (initial H2O2 concentration, initial Fe2+ concentration, initial pH value, initial acetic acid (HAc) concentration, initial
[1] | 方玲, 孟冠华, 魏旺, 等. 苯系染料中间体生产废水的处理技术现状与发展[J]. 染料与染色,2016,53(4):42 − 50. [FANG Ling, MENG Guanhua, WEI Wang, et al. Application status and development of treatment for wastewater from benzene-dye intermediates[J]. Dyestuffs and Coloration,2016,53(4):42 − 50. (in Chinese) |
[2] | GUO Y, XUE Q, CUI K P, et al. Study on the degradation mechanism and pathway of benzene dye intermediate 4-methoxy-2-nitroaniline via multiple methods in Fenton oxidation process[J]. RSC Advances,2018,8(20):10764 − 10775. doi: 10.1039/C8RA00627J |
[3] | 郭莹, 陈鸿汉, 张焕祯, 等. 基于Box-Behnken响应曲面法优化Fenton预处理高浓度染料中间体生产废水[J]. 环境科学研究,2017,30(5):775 − 783. [GUO Ying, CHEN Honghan, ZHANG Huanzhen, et al. Optimization of Fenton pre-treatment of high concentration dye intermediate wastewater based on box-behnken response surface methodology[J]. Research of Environmental Sciences,2017,30(5):775 − 783. (in Chinese with English abstract) |
[4] | TSUBOKURA Y, ASO S, KOGA T, et al. Combined repeated dose and reproductive/developmental toxicity screening test of 4-methoxy-2-nitroaniline in rats[J]. Drug and Chemical Toxicology,2015,38(4):361 − 374. doi: 10.3109/01480545.2014.973962 |
[5] | GUO Y, XUE Q, ZHANG H Z, et al. Treatment of real benzene dye intermediates wastewater by the Fenton method: characteristics and multi-response optimization[J]. RSC Advances,2018,8(1):80 − 90. doi: 10.1039/C7RA09404C |
[6] | CONTRERAS R H, DE KOWALEWSKI D G, FACELLI J C. ChemInform abstract: the NMR analysis of the methoxy-group conformation in 4-methoxy-2-nitroaniline[J]. Chemischer Informationsdienst,1982,13(31). |
[7] | AZHAGIRI S, JAYAKUMAR S, GUNASEKARAN S, et al. Molecular structure, Mulliken charge, frontier molecular orbital and first hyperpolarizability analysis on 2-nitroaniline and 4-methoxy-2-nitroaniline using density functional theory[J]. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy,2014,124:199 − 202. doi: 10.1016/j.saa.2013.12.106 |
[8] | ZHANG M H, DONG H, ZHAO L, et al. A review on Fenton process for organic wastewater treatment based on optimization perspective[J]. Science of the Total Environment,2019,670:110 − 121. doi: 10.1016/j.scitotenv.2019.03.180 |
[9] | AMETA R, CHOHADIA A K, JAIN A, et al. Fenton and photo-Fenton processes[J]//Advanced Oxidation Processes for Waste Water Treatment. Amsterdam: Elsevier, 2018: 49-87. |
[10] | FERRENTINO R, MERZARI F, ANDREOTTOLA G. Optimisation of Fe2+/H2O2 ratio in Fenton process to increase dewaterability and solubilisation of sludge[J]. Environmental Technology,2020,41(22):2946 − 2954. doi: 10.1080/09593330.2019.1589583 |
[11] | SUTTON N B, GROTENHUIS J T C, LANGENHOFF A A M, et al. Efforts to improve coupled in situ chemical oxidation with bioremediation: a review of optimization strategies[J]. Journal of Soils and Sediments,2011,11(1):129 − 140. doi: 10.1007/s11368-010-0272-9 |
[12] | CHAPELLE F H, BRADLEY P M, CASEY C C. Behavior of a chlorinated ethene plume following source-area treatment with Fenton's reagent[J]. Groundwater Monitoring & Remediation,2005,25(2):131 − 141. |
[13] | 王平, 韩占涛, 张海领, 等. 某氨氮污染地下水体抽出-处理系统优化模拟研究[J]. 水文地质工程地质,2020,47(3):34 − 43. [WANG Ping, HAN Zhantao, ZHANG Hailing, et al. Simulation and optimization of a pumping and treating system for the remediation of ammonia polluted groundwater[J]. Hydrogeology & Engineering Geology,2020,47(3):34 − 43. (in Chinese) |
[14] | JONSSON S, PERSSON Y, FRANKKI S, et al. Degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils by Fenton's reagent: a multivariate evaluation of the importance of soil characteristics and PAH properties[J]. Journal of Hazardous Materials,2007,149(1):86 − 96. doi: 10.1016/j.jhazmat.2007.03.057 |
[15] | BERGENDAHL J, HUBBARD S, GRASSO D. Pilot-scale Fenton's oxidation of organic contaminants in groundwater using autochthonous iron[J]. Journal of Hazardous Materials,2003,99(1):43 − 56. doi: 10.1016/S0304-3894(02)00356-4 |
[16] | 崔英杰, 杨世迎, 王萍, 等. Fenton原位化学氧化法修复有机污染土壤和地下水研究[J]. 化学进展,2008,20(7):1196 − 1201. [CUI Yingjie, YANG Shiying, WANG Ping, et al. Organically polluted soil and groundwater remediation by in situ Fenton oxidation[J]. Progress in Chemistry,2008,20(7):1196 − 1201. (in Chinese) |
[17] | AMBIKA S, DEVASENA M, MANIVANNAN NAMBI I. Assessment of meso scale zero valent iron catalyzed Fenton reaction in continuous-flow porous media for sustainable groundwater remediation[J]. Chemical Engineering Journal,2018,334:264 − 272. doi: 10.1016/j.cej.2017.10.046 |
[18] | KANG N, LEE D S, YOON J. Kinetic modeling of Fenton oxidation of phenol and monochlorophenols[J]. Chemosphere,2002,47(9):915 − 924. doi: 10.1016/S0045-6535(02)00067-X |
[19] | HANSSON H, KACZALA F, MARQUES M, et al. Photo-Fenton and Fenton oxidation of recalcitrant wastewater from the wooden floor industry[J]. Water Environment Research,2015,87(6):491 − 497. doi: 10.2175/106143015X14212658614559 |
[20] | HAJIAN M, MIRBAGHERI S A, JAVID A H. Comparison of classical Fenton and Fenton-like using µ-ZVI processes for the degradation of cresol in the wastewater[J]. Desalination and Water Treatment,2018,109:132 − 138. doi: 10.5004/dwt.2018.21836 |
[21] | 何正坤, 马小兰, 孙猛, 等. 地下水水化学成分对类Fenton法氧化硝基苯的影响[J]. 生态环境学报,2011,20(11):1731 − 1734. [HE Zhengkun, MA Xiaolan, SUN Meng, et al. Influences of chemical composition of groundwater on Fenton-like oxidation of nitrobenzene[J]. Ecology and Environment,2011,20(11):1731 − 1734. (in Chinese) doi: 10.3969/j.issn.1674-5906.2011.11.025 |
[22] | 郭莹, 陈鸿汉, 张焕祯, 等. Fenton氧化降解2-硝基-4-甲氧基苯胺的特性和动力学特征[J]. 环境科学研究,2017,30(10):1613 − 1621. [GUO Ying, CHEN Honghan, ZHANG Huanzhen, et al. Characteristics and kinetics of oxidative degradation of 2-nitro-4-methoxyaniline by Fenton oxidation process[J]. Research of Environmental Sciences,2017,30(10):1613 − 1621. (in Chinese with English abstract) |
[23] | 秦俊豪. 微摩尔H2O2介导的Fenton效应对几种污染物环境行为的影响[D]. 广州: 华南农业大学, 2016. [QIN Junhao. Effect of micromolar hydrogen peroxide mediated Fenton-driven on environmental behavior of several environmental pollutants[D]. Guangzhou:South China Agricultural University, 2016. (in Chinese with English abstract)] |
[24] | 展惠英. 多环芳烃类污染物在黄土中的迁移转化[D]. 兰州: 西北师范大学, 2004. ZHAN Huiying.Transfer and transform of polycyclic aromatic hydrocarbons(PAHs) in loess soils[D]. Lanzhou: Northwest Normal University, 2004. (in Chinese with English abstract) |
Effects of various environmental factors in liquid phase on oxidation of groundwater
Effects of media on oxidation under different initial conditions in the acetic acid environment
System c(Fe2+) changes before and after the acetic acid environmental reaction
System pH changes before and after the acetic acid environment reaction
Electron microscopy of different soil media
Influence of medium on oxidation in the sulfuric acid environment
Scanning electron microscope after sulfuric acid treatment
pH and c(Fe2+) changes before and after the reaction
Histogram of distribution of media elements