2021 Vol. 48, No. 2
Article Contents

GUO Wei, YUAN Fang, ZHANG Jia, XIE Bin, FENG Xueyang, CHEN Honghan. In-situ Fenton oxidation experiment of compound benzene pollutants in high salt and strong acid groundwater[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 182-189. doi: 10.16030/j.cnki.issn.1000-3665.202012021
Citation: GUO Wei, YUAN Fang, ZHANG Jia, XIE Bin, FENG Xueyang, CHEN Honghan. In-situ Fenton oxidation experiment of compound benzene pollutants in high salt and strong acid groundwater[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 182-189. doi: 10.16030/j.cnki.issn.1000-3665.202012021

In-situ Fenton oxidation experiment of compound benzene pollutants in high salt and strong acid groundwater

More Information
  • In the process of in-situ oxidation, the physical and chemical characteristics of actual ground water and water-bearing media are the important factors affecting the oxidation effect, but there are few specific studies on this effect at present. The actual high-salt and strong-acid compound benzene contaminated groundwater in a certain site is used as the research object, and 2-nitro-4-methoxyaniline (2-N) and 3-nitro-4-methoxyaniline (3-N) in groundwater are characteristic pollutants. The in-situ oxidation characteristics of Fenton’s reagent are explored, and the liquid environmental factors (initial H2O2 concentration, initial Fe2+ concentration, initial pH value, initial acetic acid (HAc) concentration, initial < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > ${\rm{SO}}_4^{2-} $ < /span > < img text_id='' class='formula-img' style='display:none;' src='202012021_Z-20210310112508.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='202012021_Z-20210310112515.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='202012021_Z-20210310112515.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='202012021_Z-20210310112515.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='202012021_Z-20210310112515.png'/ > concentration) and aquifer media on the removal of 2-N and 3-N by Fenton method are examined. The results show that (1) the Fenton method has a significant effect on removal of 2-N and 3-N, and when the initial liquid phase conditions are c(H2O2)=7 mmol/L, c(Fe2+)=4 mmol/L, pH=4, c(HAc)=0 mg/L and c( < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > ${\rm{SO}}_4^{2-} $ < /span > < img text_id='' class='formula-img' style='display:none;' src='202012021_Z-20210310112508.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='202012021_Z-20210310112515.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='202012021_Z-20210310112515.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='202012021_Z-20210310112515.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='202012021_Z-20210310112515.png'/ > )=0 mmol/L, the removal effect is the best. (2) Each factor affects the oxidation of 2-N and 3-N by the Fenton method. The effect of the addition of H2O2 and Fe2+ increases the removal rate of 2-N and 3-N. Increase in the concentration of HAc decreases the removal rate of 2-N and 3-N. (3) The groundwater medium has a strong effect on 2-N and 3-N, and the adsorption of 3-N is stronger than that of 2-N. In this experiment, the two largest adsorption states accounte for 29 % and 42 %, respectively. The existence of the adsorption state will inhibit the Fenton method to 2-N. (4) The mineral analysis results show that the medium contains a small amount of pyrite. In a sulfuric acid environment, the medium corrodes and dissolves to release Fe2+. Therefore, the Fenton reaction can be completed without additional Fe2+ to remove 2-N and 3-N.

  • 加载中
  • [1] 方玲, 孟冠华, 魏旺, 等. 苯系染料中间体生产废水的处理技术现状与发展[J]. 染料与染色,2016,53(4):42 − 50. [FANG Ling, MENG Guanhua, WEI Wang, et al. Application status and development of treatment for wastewater from benzene-dye intermediates[J]. Dyestuffs and Coloration,2016,53(4):42 − 50. (in Chinese)

    Google Scholar

    [2] GUO Y, XUE Q, CUI K P, et al. Study on the degradation mechanism and pathway of benzene dye intermediate 4-methoxy-2-nitroaniline via multiple methods in Fenton oxidation process[J]. RSC Advances,2018,8(20):10764 − 10775. doi: 10.1039/C8RA00627J

    CrossRef Google Scholar

    [3] 郭莹, 陈鸿汉, 张焕祯, 等. 基于Box-Behnken响应曲面法优化Fenton预处理高浓度染料中间体生产废水[J]. 环境科学研究,2017,30(5):775 − 783. [GUO Ying, CHEN Honghan, ZHANG Huanzhen, et al. Optimization of Fenton pre-treatment of high concentration dye intermediate wastewater based on box-behnken response surface methodology[J]. Research of Environmental Sciences,2017,30(5):775 − 783. (in Chinese with English abstract)

    Google Scholar

    [4] TSUBOKURA Y, ASO S, KOGA T, et al. Combined repeated dose and reproductive/developmental toxicity screening test of 4-methoxy-2-nitroaniline in rats[J]. Drug and Chemical Toxicology,2015,38(4):361 − 374. doi: 10.3109/01480545.2014.973962

    CrossRef Google Scholar

    [5] GUO Y, XUE Q, ZHANG H Z, et al. Treatment of real benzene dye intermediates wastewater by the Fenton method: characteristics and multi-response optimization[J]. RSC Advances,2018,8(1):80 − 90. doi: 10.1039/C7RA09404C

    CrossRef Google Scholar

    [6] CONTRERAS R H, DE KOWALEWSKI D G, FACELLI J C. ChemInform abstract: the NMR analysis of the methoxy-group conformation in 4-methoxy-2-nitroaniline[J]. Chemischer Informationsdienst,1982,13(31).

    Google Scholar

    [7] AZHAGIRI S, JAYAKUMAR S, GUNASEKARAN S, et al. Molecular structure, Mulliken charge, frontier molecular orbital and first hyperpolarizability analysis on 2-nitroaniline and 4-methoxy-2-nitroaniline using density functional theory[J]. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy,2014,124:199 − 202. doi: 10.1016/j.saa.2013.12.106

    CrossRef Google Scholar

    [8] ZHANG M H, DONG H, ZHAO L, et al. A review on Fenton process for organic wastewater treatment based on optimization perspective[J]. Science of the Total Environment,2019,670:110 − 121. doi: 10.1016/j.scitotenv.2019.03.180

    CrossRef Google Scholar

    [9] AMETA R, CHOHADIA A K, JAIN A, et al. Fenton and photo-Fenton processes[J]//Advanced Oxidation Processes for Waste Water Treatment. Amsterdam: Elsevier, 2018: 49-87.

    Google Scholar

    [10] FERRENTINO R, MERZARI F, ANDREOTTOLA G. Optimisation of Fe2+/H2O2 ratio in Fenton process to increase dewaterability and solubilisation of sludge[J]. Environmental Technology,2020,41(22):2946 − 2954. doi: 10.1080/09593330.2019.1589583

    CrossRef Google Scholar

    [11] SUTTON N B, GROTENHUIS J T C, LANGENHOFF A A M, et al. Efforts to improve coupled in situ chemical oxidation with bioremediation: a review of optimization strategies[J]. Journal of Soils and Sediments,2011,11(1):129 − 140. doi: 10.1007/s11368-010-0272-9

    CrossRef Google Scholar

    [12] CHAPELLE F H, BRADLEY P M, CASEY C C. Behavior of a chlorinated ethene plume following source-area treatment with Fenton's reagent[J]. Groundwater Monitoring & Remediation,2005,25(2):131 − 141.

    Google Scholar

    [13] 王平, 韩占涛, 张海领, 等. 某氨氮污染地下水体抽出-处理系统优化模拟研究[J]. 水文地质工程地质,2020,47(3):34 − 43. [WANG Ping, HAN Zhantao, ZHANG Hailing, et al. Simulation and optimization of a pumping and treating system for the remediation of ammonia polluted groundwater[J]. Hydrogeology & Engineering Geology,2020,47(3):34 − 43. (in Chinese)

    Google Scholar

    [14] JONSSON S, PERSSON Y, FRANKKI S, et al. Degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils by Fenton's reagent: a multivariate evaluation of the importance of soil characteristics and PAH properties[J]. Journal of Hazardous Materials,2007,149(1):86 − 96. doi: 10.1016/j.jhazmat.2007.03.057

    CrossRef Google Scholar

    [15] BERGENDAHL J, HUBBARD S, GRASSO D. Pilot-scale Fenton's oxidation of organic contaminants in groundwater using autochthonous iron[J]. Journal of Hazardous Materials,2003,99(1):43 − 56. doi: 10.1016/S0304-3894(02)00356-4

    CrossRef Google Scholar

    [16] 崔英杰, 杨世迎, 王萍, 等. Fenton原位化学氧化法修复有机污染土壤和地下水研究[J]. 化学进展,2008,20(7):1196 − 1201. [CUI Yingjie, YANG Shiying, WANG Ping, et al. Organically polluted soil and groundwater remediation by in situ Fenton oxidation[J]. Progress in Chemistry,2008,20(7):1196 − 1201. (in Chinese)

    Google Scholar

    [17] AMBIKA S, DEVASENA M, MANIVANNAN NAMBI I. Assessment of meso scale zero valent iron catalyzed Fenton reaction in continuous-flow porous media for sustainable groundwater remediation[J]. Chemical Engineering Journal,2018,334:264 − 272. doi: 10.1016/j.cej.2017.10.046

    CrossRef Google Scholar

    [18] KANG N, LEE D S, YOON J. Kinetic modeling of Fenton oxidation of phenol and monochlorophenols[J]. Chemosphere,2002,47(9):915 − 924. doi: 10.1016/S0045-6535(02)00067-X

    CrossRef Google Scholar

    [19] HANSSON H, KACZALA F, MARQUES M, et al. Photo-Fenton and Fenton oxidation of recalcitrant wastewater from the wooden floor industry[J]. Water Environment Research,2015,87(6):491 − 497. doi: 10.2175/106143015X14212658614559

    CrossRef Google Scholar

    [20] HAJIAN M, MIRBAGHERI S A, JAVID A H. Comparison of classical Fenton and Fenton-like using µ-ZVI processes for the degradation of cresol in the wastewater[J]. Desalination and Water Treatment,2018,109:132 − 138. doi: 10.5004/dwt.2018.21836

    CrossRef Google Scholar

    [21] 何正坤, 马小兰, 孙猛, 等. 地下水水化学成分对类Fenton法氧化硝基苯的影响[J]. 生态环境学报,2011,20(11):1731 − 1734. [HE Zhengkun, MA Xiaolan, SUN Meng, et al. Influences of chemical composition of groundwater on Fenton-like oxidation of nitrobenzene[J]. Ecology and Environment,2011,20(11):1731 − 1734. (in Chinese) doi: 10.3969/j.issn.1674-5906.2011.11.025

    CrossRef Google Scholar

    [22] 郭莹, 陈鸿汉, 张焕祯, 等. Fenton氧化降解2-硝基-4-甲氧基苯胺的特性和动力学特征[J]. 环境科学研究,2017,30(10):1613 − 1621. [GUO Ying, CHEN Honghan, ZHANG Huanzhen, et al. Characteristics and kinetics of oxidative degradation of 2-nitro-4-methoxyaniline by Fenton oxidation process[J]. Research of Environmental Sciences,2017,30(10):1613 − 1621. (in Chinese with English abstract)

    Google Scholar

    [23] 秦俊豪. 微摩尔H2O2介导的Fenton效应对几种污染物环境行为的影响[D]. 广州: 华南农业大学, 2016.

    Google Scholar

    [QIN Junhao. Effect of micromolar hydrogen peroxide mediated Fenton-driven on environmental behavior of several environmental pollutants[D]. Guangzhou:South China Agricultural University, 2016. (in Chinese with English abstract)]

    Google Scholar

    [24] 展惠英. 多环芳烃类污染物在黄土中的迁移转化[D]. 兰州: 西北师范大学, 2004.

    Google Scholar

    ZHAN Huiying.Transfer and transform of polycyclic aromatic hydrocarbons(PAHs) in loess soils[D]. Lanzhou: Northwest Normal University, 2004. (in Chinese with English abstract)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(4)

Article Metrics

Article views(1363) PDF downloads(132) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint