2022 Vol. 49, No. 1
Article Contents

ZHU Wenju, PING Jianhua, HOU Junshan, NING Yiwu, GENG Wenbin. A study of the water resources management and division of the groundwater heat pump system construction in Anyang[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 200-208. doi: 10.16030/j.cnki.issn.1000-3665.202011003
Citation: ZHU Wenju, PING Jianhua, HOU Junshan, NING Yiwu, GENG Wenbin. A study of the water resources management and division of the groundwater heat pump system construction in Anyang[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 200-208. doi: 10.16030/j.cnki.issn.1000-3665.202011003

A study of the water resources management and division of the groundwater heat pump system construction in Anyang

More Information
  • Considering the occurrence condition and water resources management, this paper studies the zoning of the groundwater heat pump system in the city of Anyang in Henan, makes the combination of technology and management and improves the evaluation standard, which is of more practicability. The evaluation of groundwater resources management and division is established by synthetically analyzing the hydrogeological, hydrodynamic and hydrochemical conditions of Anyang. The first-level evaluation is carried out by using the improved analytic hierarchy process of cloud model. The second-level evaluation is completed by using GIS spatial analysis function, dividing the groundwater heat pump system into three grades in the study area. The results show that the suitable development area for the groundwater heat pump system is 117.45 km2, which mainly distributes in the strong groundwater-abundant area in the center of the alluvial-proluvial fan of the Anyang River and partially distributes in the peripheral area at the fan edge. The restricted development area covers an area of 459.26 km2, which distributes in the hilly weak groundwater-abundant areas in southwest and north of the fan margin with the groundwater level drawdown funnel in the center of the fan body. The forbidden development area is of 24.02 km2 and distributes crossly, covering the water source area, the protected area of the South-to-North Water Transfer Project, along the railway and expressway. It is more comprehensive and reasonable to take the groundwater resources management and division into account on the basis of the suitability zoning, which may provide references for the scientific layout and rational development and utilization of the groundwater heat pump system.

  • 加载中
  • [1] 孔维臻, 郭明晶, 陈萌, 等. 基于模糊AHP的浅层地热能适宜性分区评价方法研究[J]. 中国矿业,2013,22(2):107 − 110. [KONG Weizhen, GUO Mingjing, CHEN Meng, et al. Study on evaluation method of regionalization of shallow geothermal energy based on fuzzy AHP[J]. China Mining Magazine,2013,22(2):107 − 110. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-4051.2013.02.027

    CrossRef Google Scholar

    [2] 倪龙, 封家平, 马最良. 地下水源热泵的研究现状与进展[J]. 建筑热能通风空调,2004,23(2):26 − 31. [NI Long, FENG Jiaping, MA Zuiliang. The state of research and development of groundwater heat pump systems[J]. Building Energy & Environment,2004,23(2):26 − 31. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-0344.2004.02.006

    CrossRef Google Scholar

    [3] RUSSO S L, TADDIA G, BACCINO G, et al. Different design scenarios related to an open loop groundwater heat pump in a large building: Impact on subsurface and primary energy consumption[J]. Energy and Buildings,2011,43(2/3):347 − 357.

    Google Scholar

    [4] 刘立才, 王金生, 张霓, 等. 北京城市规划区水源热泵系统应用适宜性分区[J]. 水文地质工程地质,2006,33(6):15 − 17. [LIU Licai, WANG Jinsheng, ZHANG Ni, et al. Suitability division for water source heat pumps in the central districts of Beijing[J]. Hydrogeology & Engineering Geology,2006,33(6):15 − 17. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2006.06.004

    CrossRef Google Scholar

    [5] 金婧, 席文娟, 陈宇飞, 等. 基于AHP的浅层地热能适宜性分区评价[J]. 水资源与水工程学报,2012,23(3):91 − 93. [JIN Jing, XI Wenjuan, CHEN Yufei, et al. Assessment of suitability of shallow geothermal energy based on AHP[J]. Journal of Water Resources and Water Engineering,2012,23(3):91 − 93. (in Chinese with English abstract)

    Google Scholar

    [6] 马聪, 周维博, 李娜. 西安市主城区地下水源热泵适宜性分区[J]. 南水北调与水利科技,2014,12(3):156 − 159. [MA Cong, ZHOU Weibo, LI Na. Suitability zonation for groundwater source heat pumps in Xi’an[J]. South-to-North Water Transfers and Water Science & Technology,2014,12(3):156 − 159. (in Chinese with English abstract)

    Google Scholar

    [7] 陈文芳, 杜尚海, 张一博, 等. 水源热泵运行中多组份溶质的反应迁移模拟[J]. 工程勘察,2017,45(7):32 − 38. [CHEN Wenfang, DU Shanghai, ZHANG Yibo, et al. Reactive transport simulation of multi-component solute in the operation of water source heat pump system[J]. Geotechnical Investigation & Surveying,2017,45(7):32 − 38. (in Chinese with English abstract)

    Google Scholar

    [8] 冯连威, 王林, 马爱华, 等. 梯级利用地下水储能的地源热泵空调系统分析[J]. 河南科技大学学报(自然科学版),2020,41(3):20 − 26. [FENG Lianwei, WANG Lin, MA Aihua, et al. Exergy analysis of ground source heat pump air-conditioning system with cascade utilization of ground water energy storage[J]. Journal of Henan University of Science and Technology (Natural Science),2020,41(3):20 − 26. (in Chinese with English abstract)

    Google Scholar

    [9] 闫峭. 地下水源热泵抽灌井群理论及应用研究——以西安市为例[D]. 西安: 长安大学, 2017

    Google Scholar

    YAN Qiao. Study on the theory and application of the ground-water heat pump wells: Taking Xi’an city as an example [D]. Xi’an: Chang’an University, 2017. ( in Chinese with English abstract )

    Google Scholar

    [10] 李颖智, 蔡五田, 耿婷婷, 等. 区域地下水污染调查取样点布设量化分配方法[J]. 水文地质工程地质,2019,46(5):24 − 30. [LI Yingzhi, CAI Wutian, GENG Tingting, et al. Quantitative sample distribution in regional groundwater contamination investigation[J]. Hydrogeology & Engineering Geology,2019,46(5):24 − 30. (in Chinese with English abstract)

    Google Scholar

    [11] AKAA O U, ABU A, SPEARPOINT M, et al. A group-AHP decision analysis for the selection of applied fire protection to steel structures[J]. Fire Safety Journal,2016,86:95 − 105. doi: 10.1016/j.firesaf.2016.10.005

    CrossRef Google Scholar

    [12] ZHOU X Y, HU Y, DENG Y, et al. A DEMATEL-based completion method for incomplete pairwise comparison matrix in AHP[J]. Annals of Operations Research,2018,271(2):1045 − 1066. doi: 10.1007/s10479-018-2769-3

    CrossRef Google Scholar

    [13] 苑雷, 陈刚. 改进层次分析法下的浅层地温能适宜性评价[J]. 可再生能源,2013,31(7):112 − 115. [YUAN Lei, CHEN Gang. Assessment of suitability of shallow geothermal energy based on improved analytic hierarchy process[J]. Renewable Energy Resources,2013,31(7):112 − 115. (in Chinese with English abstract)

    Google Scholar

    [14] 张向营, 张春山, 孟华君, 等. 基于Random Forest和AHP的贵德县北部山区滑坡危险性评价[J]. 水文地质工程地质,2018,45(4):142 − 149. [ZHANG Xiangying, ZHANG Chunshan, MENG Huajun, et al. Landslide hazard evaluation in the northern mountainous area of Guide County based on Random Forest and AHP[J]. Hydrogeology & Engineering Geology,2018,45(4):142 − 149. (in Chinese with English abstract)

    Google Scholar

    [15] 夏亮, 王永攀, 杨江平, 等. 一种基于云模型标度的改进层次分析法[J]. 空军预警学院学报,2019,33(2):112 − 115. [XIA Liang, WANG Yongpan, YANG Jiangping, et al. A modified analytical hierarchy process based on scale of cloud model[J]. Journal of Air Force Early Warning Academy,2019,33(2):112 − 115. (in Chinese with English abstract) doi: 10.3969/j.issn.2095-5839.2019.02.008

    CrossRef Google Scholar

    [16] PENG Y X, WU L, ZUO Q J, et al. Risk assessment of water inrush in tunnel through water-rich fault based on AHP-Cloud model[J]. Geomatics, Natural Hazards and Risk,2020,11(1):301 − 317. doi: 10.1080/19475705.2020.1722760

    CrossRef Google Scholar

    [17] 张彪, 戴兴国. 基于有限区间云模型和距离判别赋权的岩体质量分类模型[J]. 水文地质工程地质, 2017, 44(5): 150-157.

    Google Scholar

    ZHANG Biao, DAI Xingguo A classification model of rock mass based on finite interval cloud model and distance discrimination weighting[J]. Hydrogeology & Engineering Geology, 2017, 44(5): 150 − 157. ( in Chinese with English abstract )

    Google Scholar

    [18] 王洪利, 冯玉强. 基于云模型标度判断矩阵的改进层次分析法[J]. 中国管理科学,2005,13(增刊1):32 − 37. [WANG Hongli, FENG Yuqiang. Improved AHP based on judgment matrix scaled with cloud model[J]. Chinese Journal of Management Science,2005,13(Sup1):32 − 37. (in Chinese with English abstract)

    Google Scholar

    [19] 江迎. 基于云模型和GIS/RS的坝堤溃决风险分析及灾害损失评估研究[D]. 武汉: 华中科技大学, 2012.

    Google Scholar

    JIANG Ying. Study on risk analysis and disaster loss assessment of dam break based on cloud model and GIS/RS[D]. Wuhan: Huazhong University of Science and Technology, 2012. ( in Chinese with English abstract )

    Google Scholar

    [20] LI N. Basketball culture event detection based on comprehensive integrated method[J]. Personal and Ubiquitous Computing,2020,24(47):193 − 206. doi: 10.1007/s00779-019-01254-9

    CrossRef Google Scholar

    [21] 潘俊, 张宗禹, 关昊鹏, 等. 地下水源热泵热源井布设合理性评价指标体系[J]. 沈阳建筑大学学报(自然科学版),2016,32(3):560 − 568. [PAN Jun, ZHANG Zongyu, GUAN Haopeng, et al. Rationality evaluation index system on the design of heat source well for groundwater source heat pump[J]. Journal of Shenyang Jianzhu University (Natural Science),2016,32(3):560 − 568. (in Chinese with English abstract)

    Google Scholar

    [22] 梁乃森, 钱程, 穆文平, 等. 大牛地气田区地下水水质模糊综合评价[J]. 水文地质工程地质,2020,47(3):52 − 59. [LIANG Naisen, QIAN Cheng, MU Wenping, et al. Fuzzy comprehensive evaluation of groundwater quality of the Daniudi gas field area[J]. Hydrogeology & Engineering Geology,2020,47(3):52 − 59. (in Chinese with English abstract)

    Google Scholar

    [23] 赖光东, 周维博, 姚炳光. 西安地区浅层承压水水源热泵适宜性评价[J]. 长江科学院院报,2017,34(12):22 − 27. [LAI Guangdong, ZHOU Weibo, YAO Bingguang. Suitability evaluation for shallow confined water source heat pump in Xi’an[J]. Journal of Yangtze River Scientific Research Institute,2017,34(12):22 − 27. (in Chinese with English abstract) doi: 10.11988/ckyyb.20161274

    CrossRef Google Scholar

    [24] 刘九龙, 林黎, 程万庆. 天津市地下水源热泵系统适宜性分区[J]. 吉林大学学报(地球科学版),2012,42(增刊1):380 − 385. [LIU Jiulong, LIN Li, CHENG Wanqing. Suitability zoning for groundwater source heat pump systems in Tianjin[J]. Journal of Jilin University (Earth Science Edition),2012,42(Sup1):380 − 385. (in Chinese with English abstract)

    Google Scholar

    [25] 闫佰忠,孙剑,王昕洲,等. 基于GIS-FAHP的石家庄市地下水源热泵适宜性分区[J]. 吉林大学学报(地球科学版),2021,51(4):1172 − 1181. [YAN Baizhong, SUN Jian, WANG Xinzhou,et al. Suitability zoning of groundwater source heat pump in Shijiazhuang based on GIS-FAHP[J]. Journal of Jilin University (Earth Science Edition),2021,51(4):1172 − 1181. (in Chinese with English abstract)

    Google Scholar

    [26] 赵静. 水源热泵对地温场的影响及适宜性评价研究——以郑州市为例[D]. 北京: 中国地质大学(北京), 2009.

    Google Scholar

    ZHAO Jing. Impact of GWSHP on groundwater temperature field and suitability assessment: A case study in Zhengzhou city[D]. Beijing: China University of Geosciences(Beijing), 2009. ( in Chinese with English abstract )

    Google Scholar

    [27] 胡元平, 刘红卫, 柯立, 等. 武汉市都市发展区地下水源热泵适宜性评价[J]. 资源环境与工程,2014,28(6):981 − 984. [HU Yuanping,LIU Hongwei,KE Li, et al. The suitability evaluation of groundwater heat pump in the urban development area of Wuhan[J]. Resources Environment & Engineering,2014,28(6):981 − 984. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1211.2014.06.051

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(4)

Article Metrics

Article views(839) PDF downloads(130) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint