2021 Vol. 48, No. 6
Article Contents

ZHENG Jiating, LIU Likui, WANG Aihua, WANG Yan, LIU Ganbin. An experimental study of removal of chromium from contaminated soft soil with the electrokinetic soil flushing method considering temperature and low voltage[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 206-212. doi: 10.16030/j.cnki.issn.1000-3665.202010056
Citation: ZHENG Jiating, LIU Likui, WANG Aihua, WANG Yan, LIU Ganbin. An experimental study of removal of chromium from contaminated soft soil with the electrokinetic soil flushing method considering temperature and low voltage[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 206-212. doi: 10.16030/j.cnki.issn.1000-3665.202010056

An experimental study of removal of chromium from contaminated soft soil with the electrokinetic soil flushing method considering temperature and low voltage

More Information
  • A series of column tests of chromium-contaminated soft soil were performed in lab using self-designed electrokinetic soil flushing apparatus considering temperature. The changes of the current and electrolyte solution pH, and the effects of the type of leaching agent (i.e. sodium dodecylbenzene sulfonate, citric acid and oxalic acid), applied voltage and temperature on the removal behavior of chromium were analyzed. The results show that chromium in soil can be removed effectively with the electrokinetic soil flushing method. Compared with the single soil flushing method using sodium dodecylbenzene sulfonate (SDS), the removal ratio of Cr(VI) and Cr(total) can increase to 2.79 and 3.12 times when the voltage of 10 V is applied. When the raising temperature increases to 45 ℃, the removal ratio of Cr(VI) and Cr(total) both are greatly improved as citric acid (CA) and oxalic acid (OA) are leaching agents, while the removal ratio of Cr(total) decreases by 4.25% when using SDS as leaching agent. The group using oxalic acid as leaching agent shows the best removal efficiency, and the removal ratio of Cr(VI) and Cr(total) reach 82.08% and 77.57%, respectively. After remediation, the soil structure has changed, and pores between soil particles become smaller and the soils are more compacted.

  • 加载中
  • [1] HE J Y, HE C Q, CHEN X P, et al. Comparative study of remediation of Cr(VI)-contaminated soil using electrokinetics combined with bioremediation[J]. Environmental Science and Pollution Research,2018,25(18):17682 − 17689. doi: 10.1007/s11356-018-1741-8

    CrossRef Google Scholar

    [2] DHAL B, THATOI H N, DAS N N, et al. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review[J]. Journal of Hazardous Materials,2013,250/251:272 − 291. doi: 10.1016/j.jhazmat.2013.01.048

    CrossRef Google Scholar

    [3] HE Z, SHENTU U, YANG X, et al. Heavy metal contamination of soils: sources, indicators, and assessment[J]. Journal of Environmental Indicators,2015,9:17 − 18.

    Google Scholar

    [4] LIU L W, LI W, SONG W P, et al. Remediation techniques for heavy metal-contaminated soils: Principles and applicability[J]. Science of the Total Environment,2018,633:206 − 219. doi: 10.1016/j.scitotenv.2018.03.161

    CrossRef Google Scholar

    [5] 金依婷, 王艳, 李轲轲, 等. 络合剂淋洗Cu污染粉土的土柱试验研究[J]. 水文地质工程地质,2018,45(2):165 − 170. [JIN Yiting, WANG Yan, LI Keke, et al. A study of soil column experiments for copper contaminated silt flushed by chelating agents[J]. Hydrogeology & Engineering Geology,2018,45(2):165 − 170. (in Chinese with English abstract)

    Google Scholar

    [6] 董汉英, 仇荣亮, 赵芝灏, 等. 工业废弃地多金属污染土壤组合淋洗修复技术研究[J]. 土壤学报,2010,47(6):1126 − 1133. [DONG Hanying, QIU Rongliang, ZHAO Zhihao, et al. Sequential elution technique for remediation of multi-metal contaminated brownfield soils[J]. Acta Pedologica Sinica,2010,47(6):1126 − 1133. (in Chinese with English abstract) doi: 10.11766/trxb200906020241

    CrossRef Google Scholar

    [7] ZHANG H J, GAO Y T, XIONG H B. Removal of heavy metals from polluted soil using the citric acid fermentation broth: a promising washing agent[J]. Environmental Science and Pollution Research,2017,24(10):9506 − 9514. doi: 10.1007/s11356-017-8660-y

    CrossRef Google Scholar

    [8] 郑复乐, 姚荣江, 杨劲松, 等. 淋洗液对沿海滩涂设施土壤重金属的洗脱效应[J]. 中国环境科学,2018,38(11):4218 − 4227. [ZHENG Fule, YAO Rongjiang, YANG Jinsong, et al. Eluting effects of different eluents on heavy metals in greenhouse soils from coastal mudflat area[J]. China Environmental Science,2018,38(11):4218 − 4227. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6923.2018.11.030

    CrossRef Google Scholar

    [9] 曹晓雅, 曹俊雅, 李媛媛, 等. 表面活性剂对SRB修复Cr污染土壤的影响[C]//中国化工学会2013年学术年会. 南京, 2013: 477.

    Google Scholar

    CAO Xiaoya, CAO Junya, LI Yuanyuan, et al. Effect of surfactants on SRB repairing Cr contaminated soil[C]//China Chemical Industry Association 2013 Academic Annual Meeting. Nanjing, 2013: 477. (in Chinese with English abstract)

    Google Scholar

    [10] LI D, SUN D L, HU S Y, et al. Conceptual design and experiments of electrochemistry-Flushing technology for the remediation of historically Cr(Ⅵ)-contaminated soil[J]. Chemosphere,2016,144:1823 − 1830. doi: 10.1016/j.chemosphere.2015.09.077

    CrossRef Google Scholar

    [11] LI D, JI G Z, HU J, et al. Remediation strategy and electrochemistry Flushing &reduction technology for real Cr(VI)-contaminated soils[J]. Chemical Engineering Journal,2018,334:1281 − 1288. doi: 10.1016/j.cej.2017.11.074

    CrossRef Google Scholar

    [12] PENG G Q, TIAN G M. Using electrode electrolytes to enhance electrokinetic removal of heavy metals from electroplating sludge[J]. Chemical Engineering Journal,2010,165(2):388 − 394. doi: 10.1016/j.cej.2010.10.006

    CrossRef Google Scholar

    [13] FU R B, WEN D D, CHEN X, et al. Treatment of decabromodiphenyl ether (BDE209) contaminated soil by solubilizer-enhanced electrokinetics coupled with ZVI-PRB[J]. Environmental Science and Pollution Research,2017,24(15):13509 − 13518. doi: 10.1007/s11356-017-8919-3

    CrossRef Google Scholar

    [14] 蔡光华, 陆海军, 刘松玉. 温度梯度下压实黏土的水热迁移规律和渗透特性[J]. 东北大学学报(自然科学版),2017,38(6):874 − 879. [CAI Guanghua, LU Haijun, LIU Songyu. Moisture-heat migration laws and permeability of compacted clay under temperature gradient[J]. Journal of Northeastern University (Natural Science),2017,38(6):874 − 879. (in Chinese with English abstract) doi: 10.12068/j.issn.1005-3026.2017.06.023

    CrossRef Google Scholar

    [15] 司马文霞, 骆玲, 袁涛, 等. 土壤电阻率的温度特性及其对直流接地极发热的影响[J]. 高电压技术,2012,38(5):1192 − 1198. [SIMA Wenxia, LUO Ling, YUAN Tao, et al. Temperature characteristic of soil resistivity and its effect on the DC grounding electrode heating[J]. High Voltage Engineering,2012,38(5):1192 − 1198. (in Chinese with English abstract)

    Google Scholar

    [16] 孟凡生, 王业耀. 铬(VI)污染土壤电动修复影响因素研究[J]. 农业环境科学学报,2006,25(4):983 − 987. [MENG Fansheng, WANG Yeyao. Influencing factors of electrokinetic remediation for chromium-polluted soils[J]. Journal of Agro-Environment Science,2006,25(4):983 − 987. (in Chinese with English abstract) doi: 10.3321/j.issn:1672-2043.2006.04.033

    CrossRef Google Scholar

    [17] RUI D H, WU Z P, JI M, et al. Remediation of Cd- and Pb- contaminated clay soils through combined freeze-thaw and soil washing[J]. Journal of Hazardous Materials,2019,369:87 − 95. doi: 10.1016/j.jhazmat.2019.02.038

    CrossRef Google Scholar

    [18] 郑凌逶, 谢新宇, 谢康和, 等. 电渗法加固地基试验及应用研究进展[J]. 浙江大学学报(工学版),2017,51(6):1064 − 1073. [ZHENG Lingwei, XIE Xinyu, XIE Kanghe, et al. Test and application research advance on foundation reinforcement by electro-osmosis method[J]. Journal of Zhejiang University (Engineering Science),2017,51(6):1064 − 1073. (in Chinese with English abstract) doi: 10.3785/j.issn.1008-973X.2017.06.002

    CrossRef Google Scholar

    [19] 闫峰, 刘合满, 梁东丽, 等. 不同土壤对Cr吸附的动力学特征[J]. 农业工程学报,2008,24(6):21 − 25. [YAN Feng, LIU Heman, LIANG Dongli, et al. Kinetic characteristics of hexavalent chromium apparent adsorption on different soils[J]. Transactions of the Chinese Society of Agricultural Engineering,2008,24(6):21 − 25. (in Chinese with English abstract) doi: 10.3321/j.issn:1002-6819.2008.06.004

    CrossRef Google Scholar

    [20] SAKELLARIOU L, PAPASSIOPI N. An approach to electrokinetic removal of Cr(VI) from soil and Kaolin samples[J]. Bulletin of Environmental Contamination and Toxicology,2018,101(6):718 − 724. doi: 10.1007/s00128-018-2432-3

    CrossRef Google Scholar

    [21] KUMAR V, CHITHRA K. Removal of Cr(VI) from spiked soils by electrokinetics[J]. Research Journal of Chemistry and Environment,2013,17(8):52 − 59.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(1702) PDF downloads(106) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint