2021 Vol. 48, No. 4
Article Contents

WANG Xingchen, WANG Zhiliang, HUANG Youpeng, JIA Shuailong. Particle flow simulation of macro- and meso-mechanical behavior of the prefabricated fractured rock sample[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 86-92. doi: 10.16030/j.cnki.issn.1000-3665.202010044
Citation: WANG Xingchen, WANG Zhiliang, HUANG Youpeng, JIA Shuailong. Particle flow simulation of macro- and meso-mechanical behavior of the prefabricated fractured rock sample[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 86-92. doi: 10.16030/j.cnki.issn.1000-3665.202010044

Particle flow simulation of macro- and meso-mechanical behavior of the prefabricated fractured rock sample

More Information
  • To examine the macro-and meso-mechanical behaviors and crack propagation mode of the prefabricated and fractured rock sample under biaxial compression, the particle flow code (PFC) is first used to study the effect of the micro-parameters of the parallel bond model on the macro-parameters. Combined with the conventional triaxial compression test of intact granite, the meso-parameters are calibrated. The mechanical properties of the sample with prefabricated double fractures (upper fracture ① and lower fracture ②) under confining pressure are simulated with the set of parameters. The results show that the PFC code and the calibrated parameters can better simulate the failure of the complete samples. As the confining pressure increases, the peak strength and elastic modulus of the double-fractured rock sample increase. When the angle α2 between the lower fracture ② and the horizontal is 90°, both of them reach the maximum values. Under different α2, the simulated crack evolution of each rock sample goes through three stages of crack initiation, development and stabilization. With the decreasing confining pressure and the increasing axial stress, the damage of the force chains between particles becomes more severe. Due to the difference in the concentration and distribution of the tensile force chains, the cracks along the length of the horizontal fracture propagate along the axial direction, and the penetration of the two fractures presents different ways.

  • 加载中
  • [1] 罗浩, 霍宇翔, 巨能攀, 等. 弃渣场边坡的粒径分布特征及其失稳机制研究[J]. 水文地质工程地质,2020,47(1):69 − 79. [LUO Hao, HUO Yuxiang, JU Nengpan, et al. A study of the particle size distribution characteristics and instability mechanism of the slope of an abandoned slag yard[J]. Hydrogeology & Engineering Geology,2020,47(1):69 − 79. (in Chinese with English abstract)

    Google Scholar

    [2] 赵国彦, 戴兵, 马驰. 平行黏结模型中细观参数对宏观特性影响研究[J]. 岩石力学与工程学报,2012,31(7):1491 − 1498. [ZHAO Guoyan, DAI Bing, Ma Chi. Study of effects of microparameters on macroproperties for parallel bonded model[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(7):1491 − 1498. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6915.2012.07.024

    CrossRef Google Scholar

    [3] YANG S Q, HUANG Y H, JING H W, et al. Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression[J]. Engineering Geology,2014,178:28 − 48. doi: 10.1016/j.enggeo.2014.06.005

    CrossRef Google Scholar

    [4] 黄彦华, 杨圣奇. 非共面双裂隙红砂岩宏细观力学行为颗粒流模拟[J]. 岩石力学与工程学报,2014,33(8):1644 − 1653. [HUANG Yanhan, YANG Shengqi. Particle flow simulation of macro-and meso-mechanical behavior of red sandstone containing two pre-existing non-coplanar fissures[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(8):1644 − 1653. (in Chinese with English abstract)

    Google Scholar

    [5] 王林丰. 含预制裂隙花岗岩变形破坏特征三轴试验与离散元数值分析[D]. 厦门: 华侨大学, 2017.

    Google Scholar

    WANG Linfeng. Analysis of deformation and failure characteristics of pre-cracked granite samples with triaxial experiments and discrete element method[D]. Xiamen: Huaqiao University, 2017. (in Chinese with English abstract)

    Google Scholar

    [6] 田文岭, 杨圣奇, 黄彦华. 不同围压下共面双裂隙脆性砂岩裂纹演化特性颗粒流模拟研究[J]. 采矿与安全工程学报,2017,34(6):1207 − 1215. [TIAN Wenling, YANG Shengqi, HUANG Yanhua. PFC2D simulation on crack evolution behavior of brittle sandstone containing two coplanar fissures under different confining pressures[J]. Journal of Mining & Safety Engineering,2017,34(6):1207 − 1215. (in Chinese with English abstract)

    Google Scholar

    [7] 张社荣, 孙博, 王超, 等. 双轴压缩试验下岩石裂纹扩展的离散元分析[J]. 岩石力学与工程学报,2013,32(增刊 2):3083 − 3091. [ZHANG Sherong, SUN Bo, WANG Chao, et al. Discrete element analysis of crack propagation in rocks under biaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(Sup 2):3083 − 3091. (in Chinese with English abstract)

    Google Scholar

    [8] 王振永. 裂隙性围岩力学特性和破裂机理的颗粒流数值模拟研究[D]. 成都: 西南交通大学, 2016.

    Google Scholar

    WANG Zhenyong. Numerical simulation of mechanical properties and failure mechanism of fractured surrounding rock using particle flow code[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese with English abstract)

    Google Scholar

    [9] YAO W, CAI Y Y, YU J, et al. Experimental and numerical study on mechanical and cracking behaviors of flawed granite under triaxial compression[J]. Measurement,2019,145:573 − 582. doi: 10.1016/j.measurement.2019.03.035

    CrossRef Google Scholar

    [10] 何树江. 基于颗粒流的灰岩细观力学参数标定方法及其敏感性分析[D]. 济南: 山东大学, 2018.

    Google Scholar

    HE Shujiang. Calibration method and sensitivity analysis of micromechanic parameters for limestone based on particle flow[D]. Jinan: Shandong University, 2018. (in Chinese with English abstract)

    Google Scholar

    [11] 张科, 刘享华, 杨红宣, 等. 含孔洞裂隙岩体灌浆后力学特性的物理试验与数值模拟[J]. 水文地质工程地质,2019,46(1):79 − 85. [ZHANG Ke, LIU Xianghua, YANG Hongxuan, et al. Experimental and numerical simulation of the mechanical characteristics of rocks containing hole and flaw after grouting[J]. Hydrogeology & Engineering Geology,2019,46(1):79 − 85. (in Chinese with English abstract)

    Google Scholar

    [12] SHI H, ZHANG H Q, SONG L, et al. Failure characteristics of sandstone specimens with randomly distributed pre-cracks under uniaxial compression[J]. Environmental Earth Sciences,2020,79(3):394 − 405.

    Google Scholar

    [13] HUANG Y H, YANG S Q, ZENG W. Experimental and numerical study on loading rate effects of rock-like material specimens containing two unparallel fissures[J]. Journal of Central South University,2016,23(6):1474 − 1485. doi: 10.1007/s11771-016-3200-3

    CrossRef Google Scholar

    [14] 刘华伟, 杨晨. 闭合与非闭合裂隙岩石单轴压缩的颗粒流细观分析[J]. 水电能源科学,2016,34(1):131 − 135. [LIU Huawei, YANG Chen. Micro-analysis of uniaxial compression of cracked rock containing open or closing fissure based on PFC[J]. Water Resources and Power,2016,34(1):131 − 135. (in Chinese with English abstract)

    Google Scholar

    [15] POTYONDY D O, CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(8):1329 − 1364. doi: 10.1016/j.ijrmms.2004.09.011

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(1)

Article Metrics

Article views(2091) PDF downloads(77) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint