| Citation: | SONG Jinglei, HE Wei, HAO Shefeng, JIANG Bo, LIU Jin, BU Fan, SONG Zezhuo. An experimental study of the anti-cracking characteristics of foreign-clay based on rock slope[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 144-149. doi: 10.16030/j.cnki.issn.1000-3665.202008025 |
Foreign-clay spraying is currently a common technology for ecological restoration of exposed rock slopes. However, under arid climate conditions, the large amount of internal water loss of the foreign-clay on the slope surface will easily cause shrinkage and cracking, which will affect the overall stability of the slope and the growth of surface vegetation. In this paper, aiming at the problem of cracking of the foreign-clay on the slope surface, by changing the thickness of the soil, polymer composite foreign-clay with different polyurethane (PU) concentrations is prepared to analyze the development characteristics of cracks through a series of indoor drying tests. In addition, particles (Pores) and cracks analysis system (PCAS) are used to conduct a quantitative analysis of the geometry of crack network, so as to further explore the influence of soil thickness and polymer additive concentration on fracture development.
| [1] | 张勇, 温智, 程英建. 四川巴中市滑坡灾害与降雨雨型关系探讨[J]. 水文地质工程地质,2020,47(2):178 − 182. [ZHANG Yong, WEN Zhi, CHENG Yingjian. A discussion of the relationship between landslide disaster and rainfall types in Bazhong of Sichuan[J]. Hydrogeology & Engineering Geology,2020,47(2):178 − 182. (in Chinese with English abstract) |
| [2] | 郭敏, 苏生瑞, 曾金. 降雨条件下堆积层滑坡变形特征及形成机理研究[J]. 河北工程大学学报(自然科学版),2019,36(3):39 − 45. [GUO Min, SU Shengrui, ZENG Jin. Deformation characteristics and formation mechanism of accumulated landslides under rainfall conditions[J]. Journal of Hebei University of Engineering (Natural Science Edition),2019,36(3):39 − 45. (in Chinese with English abstract) |
| [3] | 周杨, 刘果果, 白兰英, 等. 降雨诱发黄土边坡失稳室内试验研究[J]. 武汉大学学报(工学版),2016,49(6):838 − 843. [ZHOU Yang, LIU Guoguo, BAI Lanying, et al. Model test study of loess slope instability induced by rainfall[J]. Engineering Journal of Wuhan University,2016,49(6):838 − 843. (in Chinese with English abstract) |
| [4] | 李滨, 冯振, 赵瑞欣, 等. 三峡地区“14·9”极端暴雨型滑坡泥石流成灾机理分析[J]. 水文地质工程地质,2016,43(4):118 − 127. [LI Bin, FENG Zhen, ZHAO Ruixin, et al. Mechanism of “14·9” rainstorm triggered landslides and debris-flows in the Three Gorges area[J]. Hydrogeology & Engineering Geology,2016,43(4):118 − 127. (in Chinese with English abstract) |
| [5] | 廖一蕾, 张子新, 肖时辉, 等. 水泥加固黏性土微观特征试验研究[J]. 岩石力学与工程学报,2016,35(增刊2):4318 − 4327. [LIAO Yilei, ZHANG Zixin, XIAO Shihui, et al. Microstructure research on cement stabilized clays[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(Sup2):4318 − 4327. (in Chinese with English abstract) |
| [6] | 汤怡新, 刘汉龙, 朱伟. 水泥固化土工程特性试验研究[J]. 岩土工程学报,2000,22(5):549 − 554. [TANG Yixin, LIU Hanlong, ZHU Wei. Study on engineering properties of cement-stabilized soil[J]. Chinese Journal of Geotechnical Engineering,2000,22(5):549 − 554. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2000.05.008 |
| [7] | 张家明, 陈积普, 杨继清, 等. 中国岩质边坡植被护坡技术研究进展[J]. 水土保持学报,2019,33(5):1 − 7. [ZHANG Jiaming, CHEN Jipu, YANG Jiqing, et al. Advances in biological protection of rock slopes in China[J]. Journal of Soil and Water Conservation,2019,33(5):1 − 7. (in Chinese with English abstract) |
| [8] | CARAVACA F, LOZANO Z, RODRÍGUEZ-CABALLERO G, et al. Spatial shifts in soil microbial activity and degradation of pasture cover caused by prolonged exposure to cement dust[J]. Land Degradation & Development,2017,28(4):1329 − 1335. |
| [9] | NAJIM K B, MAHMOD Z S, ATEA A K M. Experimental investigation on using Cement Kiln Dust (CKD) as a cement replacement material in producing modified cement mortar[J]. Construction and Building Materials,2014,55:5 − 12. doi: 10.1016/j.conbuildmat.2014.01.015 |
| [10] | EL-ATTAR M M, SADEK D M, SALAH A M. Recycling of high volumes of cement kiln dust in bricks industry[J]. Journal of Cleaner Production,2017,143:506 − 515. doi: 10.1016/j.jclepro.2016.12.082 |
| [11] | 李绍才, 孙海龙. 中国岩石边坡植被护坡技术现状及发展趋势[J]. 资源科学,2004,26(增刊1):61 − 66. [LI Shaocai, SUN Hailong. Developing trend and situations of technique to stabilize rock slope with vegetative cover in China[J]. Resources Science,2004,26(Sup1):61 − 66. (in Chinese with English abstract) |
| [12] | 方军辉, 朱德滨, 程承, 等. 客土喷播的护坡机理及基材和施工等控制要点[J]. 森林工程,2014,30(3):116 − 119. [FANG Junhui, ZHU Debin, CHENG Cheng, et al. Mechanism of slope protection, base material mixture, and construction technology of soil spray-sowing[J]. Forest Engineering,2014,30(3):116 − 119. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-005X.2014.03.029 |
| [13] | LUO C, GUO X P, LIU G H, et al. Green waste compost as a substitute for turfy soil in external-soil spray seeding substrate[J]. Environmental Technology,2019:1 − 13. |
| [14] | 唐朝生, 施斌, 崔玉军. 土体干缩裂隙的形成发育过程及机理[J]. 岩土工程学报,2018,40(8):1415 − 1423. [TANG Chaosheng, SHI Bin, CUI Yujun. Behaviors and mechanisms of desiccation cracking of soils[J]. Chinese Journal of Geotechnical Engineering,2018,40(8):1415 − 1423. (in Chinese with English abstract) |
| [15] | 曾浩, 唐朝生, 林銮, 等. 土体干缩裂隙发育方向及演化特征的层间摩擦效应研究[J]. 岩土工程学报,2019,41(6):1172 − 1180. [ZENG Hao, TANG Chaosheng, LIN Luan, et al. Interfacial friction dependence of propagation direction and evolution characteristics of soil desiccation cracks[J]. Chinese Journal of Geotechnical Engineering,2019,41(6):1172 − 1180. (in Chinese with English abstract) |
| [16] | 唐朝生, 施斌, 刘春. 膨胀土收缩开裂特性研究[J]. 工程地质学报,2012,20(5):663 − 673. [TANG Chaosheng, SHI Bin, LIU Chun. Study on desiccation cracking behaviour of expansive soil[J]. Journal of Engineering Geology,2012,20(5):663 − 673. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2012.05.003 |
| [17] | 孙强, 龚绪龙, 张玉良, 等. 黏土失水干缩裂缝发育动态试验研究[J]. 水文地质工程地质,2014,41(5):144 − 147. [SUN Qiang, GONG Xulong, ZHANG Yuliang, et al. A study of the dynamic experimental of clay desiccation cracking process[J]. Hydrogeology & Engineering Geology,2014,41(5):144 − 147. (in Chinese with English abstract) |
| [18] | 王宝军, 施斌, 刘志彬, 等. 基于GIS的黏性土微观结构的分形研究[J]. 岩土工程学报,2004,26(2):244 − 247. [WANG Baojun, SHI Bin, LIU Zjibin, et al. Fractal study on microstructure of clayey soil by GIS[J]. Chinese Journal of Geotechnical Engineering,2004,26(2):244 − 247. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2004.02.018 |
Relationship of water content and time of samples with different thicknesses
Picture of the fractal dimension and the intersection point number on the surface of the samples with different thicknesses
Surface crack network of the samples with different thicknesses after completely cracking
Relationship of evaporation characteristic parameters of the samples with different CPU
Picture of the fractal dimension and the intersection point number on the surface of the samples with different CPU
Surface crack network of the samples with different CPU after completely cracking
Schematic diagram of the capillary phenomenon inside soil
Schematic diagram of thickness affecting cracking of soil
Schematic diagram of the interaction between polyurethane solution and soil