2021 Vol. 48, No. 4
Article Contents

LI Yanqi, HUANG Da, MENG Qiujie. An analysis of the deformation characteristics of soft-hard interbedded anti-tilting layered rock slope based on centrifuge and numerical simulation[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 141-150. doi: 10.16030/j.cnki.issn.1000-3665.202007062
Citation: LI Yanqi, HUANG Da, MENG Qiujie. An analysis of the deformation characteristics of soft-hard interbedded anti-tilting layered rock slope based on centrifuge and numerical simulation[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 141-150. doi: 10.16030/j.cnki.issn.1000-3665.202007062

An analysis of the deformation characteristics of soft-hard interbedded anti-tilting layered rock slope based on centrifuge and numerical simulation

More Information
  • The construction in mountain areas in western China has revealed many large-scale bending toppling deformation bodies, and most of them are of soft and hard interlayer structures. In order to further explore the deformation and failure law of anti-dumping soft-hard interbedded rock slope, this study combines the large-scale geotechnical centrifuge test and the joint strength criterion of Hoek-Brown and Mohr-Coulomb, considering the tension-shear and compression-shear failure of the joint surface to carry out test and numerical simulation analysis for this kind of slope. The displacement and stress curve of the monitoring point are combined, the deformation and failure process of the slope is described in detail and the correctness of the proposed strength criterion and the numerical model are verified. Based on this numerical model, the influence of different geometric factors on this kind of slope is examined. The results show that the joint strength criterion of Hoek-Brown and Mohr-Coulomb can accurately simulate the interlaminar dislocation and rock bending of anti-dumping soft-hard interbedded rock slope. The whole process of toppling deformation and failure of this kind of slope is as follows: the interlayer first dislocates, then the slope begins to bend from the foot of the slope, the tension crack appears at the back edge of the slope, and at the same time the slope as a whole bends to the empty surface. Finally, 2 or 3 failure surfaces are formed. With the increase of the dip angle of the rock layer, the first-order failure surface of the slope gradually develops to the depth of the slope. With the decrease of the thickness ratio of the soft/hard strata, the vertical displacement of the top of the slope becomes smaller, and the integrity of slope sliding increases gradually, and with the increase of the thickness ratio of the soft/hard strata, the failure surface of the slope gradually changes from rough 'sawtooth' to smooth 'arc'.

  • 加载中
  • [1] 郑达, 毛峰, 王沁沅, 等. 上硬下软反倾边坡开挖变形响应的物理模拟[J]. 水文地质工程地质,2019,46(5):89 − 95. [ZHENG Da, MAO Feng, WANG Qinyuan, et al. Physical simulation of the excavation deformation response of counter-tilt slope with rigid layers on the soft[J]. Hydrogeology & Engineering Geology,2019,46(5):89 − 95. (in Chinese with English abstract)

    Google Scholar

    [2] 王林峰, 陈洪凯, 唐红梅. 反倾岩质边坡破坏的力学机制研究[J]. 岩土工程学报,2013,35(5):884 − 889. [WANG Linfeng, CHEN Hongkai, TANG Hongmei. Mechanical mechanism of failure for anti-inclined rock slopes[J]. Chinese Journal of Geotechnical Engineering,2013,35(5):884 − 889. (in Chinese with English abstract)

    Google Scholar

    [3] 马洪生, 庄卫林, 刘阳, 等. 顺层岩质边坡静力开挖物理模拟试验研究[J]. 水文地质工程地质,2016,43(3):37 − 43. [MA Hongsheng, ZHUANG Weilin, LIU Yang, et al. Physical excavation test research on a bedding rock slope[J]. Hydrogeology & Engineering Geology,2016,43(3):37 − 43. (in Chinese with English abstract)

    Google Scholar

    [4] HUANG R Q, LI W. Formation, distribution and risk control of landslides in China[J]. Journal of Rock Mechanics and Geotechnical Engineering,2012,2011(2):97 − 116.

    Google Scholar

    [5] 黄润秋, 李渝生, 严明. 斜坡倾倒变形的工程地质分析[J]. 工程地质学报,2017,25(5):1165 − 1181. [HUANG Runqiu, LI Yusheng, YAN Ming. The implication and evaluation of toppling failure in engineering geology practice[J]. Journal of Engineering Geology,2017,25(5):1165 − 1181. (in Chinese with English abstract)

    Google Scholar

    [6] 孙朝燚, 陈从新, 郑允, 等. 岩质反倾边坡复合倾倒破坏分析[J]. 湖南大学学报(自然科学版),2020,47(1):130 − 138. [SUN Chaoyan, CHEN Congxin, ZHENG Yun, et al. Analysis of anti-dip rock slopes against composite toppling failure[J]. Journal of Hunan University(Natural Sciences),2020,47(1):130 − 138. (in Chinese with English abstract)

    Google Scholar

    [7] 邹丽芳, 徐卫亚, 宁宇, 等. 反倾层状岩质边坡倾倒变形破坏机理综述[J]. 长江科学院院报,2009,26(5):25 − 30. [ZOU Lifang, XU Weiya, NING Yu, et al. Overview of toppling failure mechanism of countertendency layered rock slopes[J]. Journal of Yangtze River Scientific Research Institute,2009,26(5):25 − 30. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-5485.2009.05.007

    CrossRef Google Scholar

    [8] ADHIKARY D P, DYSKIN A V, JEWELL R J, et al. A study of the mechanism of flexural toppling failure of rock slopes[J]. Rock Mechanics and Rock Engineering,1997,30(2):75 − 93. doi: 10.1007/BF01020126

    CrossRef Google Scholar

    [9] 郑达, 王沁沅, 毛峰, 等. 反倾层状岩质边坡深层倾倒变形关键致灾因子及成灾模式的离心试验研究[J]. 岩石力学与工程学报,2019,38(10):1954 − 1963. [ZHENG Da, WANG Qinyuan, MAO Feng, et al. Centrifuge model test study on the key hazard-inducing factors of deep toppling deformation and disaster patterns of counter-tilt layered rock slopes[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(10):1954 − 1963. (in Chinese with English abstract)

    Google Scholar

    [10] 黄波林, 陈小婷, 彭轩明. 三峡库区巫山县廖家坪危岩体倾倒机制数值模拟分析[J]. 水文地质工程地质,2008,35(5):24 − 27. [HUANG Bolin, CHEN Xiaoting, PENG Xuanming. Liaojiaping dangerous rockmass toppling numerical analysis in Wushan County in the Three Gorges Reservoir Region[J]. Hydrogeology & Engineering Geology,2008,35(5):24 − 27. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2008.05.006

    CrossRef Google Scholar

    [11] 黄润秋, 唐世强. 某倾倒边坡开挖下的变形特征及加固措施分析[J]. 水文地质工程地质,2007,34(6):49 − 54. [HUANG Runqiu, TANG Shiqiang. On the deformation characteristics and reinforcement measures of a toppling slope under excavation[J]. Hydrogeology & Engineering Geology,2007,34(6):49 − 54. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2007.06.012

    CrossRef Google Scholar

    [12] 白洁, 巨能攀, 张成强, 等. 苗尾水电站赵子坪岸坡变形失稳的地下水动力作用分析[J]. 水文地质工程地质,2019,46(4):159 − 166. [BAI Jie, JU Nengpan, ZHANG Chengqiang, et al. Dynamic analyses of groundwater on the deformation and instability of the Zhaoziping bank slope near the Miaowei Hydropower Station[J]. Hydrogeology & Engineering Geology,2019,46(4):159 − 166. (in Chinese with English abstract)

    Google Scholar

    [13] 姚文敏, 胡斌, 余海兵, 等. 三维软硬互层边坡的破坏模式与稳定性研究[J]. 工程科学学报,2017,39(2):182 − 189. [YAO Wenmin, HU Bin, YU Haibing, et al. Numerical analysis of the failure modes and stability of 3D slopes with interbreeding of soft and hard rocks[J]. Chinese Journal of Engineering,2017,39(2):182 − 189. (in Chinese with English abstract)

    Google Scholar

    [14] 王霄, 陈志坚, 徐进鹏, 等. 似层状岩质边坡倾倒变形破坏过程数值模拟[J]. 水文地质工程地质,2018,45(1):137 − 143. [WANG Xiao, CHEN Zhijian, XU Jinpeng, et al. Numerical simulation of deformation and failure process of a toppling-sliding rock slope with a quasi-lamellar structure[J]. Hydrogeology & Engineering Geology,2018,45(1):137 − 143. (in Chinese with English abstract)

    Google Scholar

    [15] KARAMI A, STEAD D. Asperity degradation and damage in the direct shear test: a hybrid FEM/DEM approach[J]. Rock Mechanics and Rock Engineering,2008,41(2):229 − 266. doi: 10.1007/s00603-007-0139-6

    CrossRef Google Scholar

    [16] 陈小婷, 黄波林. FEM/DEM法在典型柱状危岩体破坏过程数值分析中的应用[J]. 水文地质工程地质,2018,45(4):137 − 141. [CHEN Xiaoting, HUANG Bolin. Application of the FEM /DEM method to numerical analyses of the failure process of representative pillar-shape dangerous rockmass[J]. Hydrogeology & Engineering Geology,2018,45(4):137 − 141. (in Chinese with English abstract)

    Google Scholar

    [17] 刘郴玲, 常晓林, 唐龙文, 等. 基于重力增加法的边坡失稳破坏全过程模拟[J]. 长江科学院院报,2018,35(9):133 − 138. [LIU Chenling, CHANG Xiaolin, TANG Longwen, et al. Simulation of the whole process of slope failure based on gravity increase method[J]. Journal of Yangtze River Scientific Research Institute,2018,35(9):133 − 138. (in Chinese with English abstract) doi: 10.11988/ckyyb.20170376

    CrossRef Google Scholar

    [18] 程东幸, 刘大安, 丁恩保, 等. 层状反倾岩质边坡影响因素及反倾条件分析[J]. 岩土工程学报,2005,27(11):127 − 131. [CHENG Dongxing, LIU Da’an, DING Enbao, et al. Analysis on influential factors and toppling conditions of toppling rock slope[J]. Chinese Journal of Geotechnical Engineering,2005,27(11):127 − 131. (in Chinese with English abstract)

    Google Scholar

    [19] HUANG D, LI B, MA W Z, et al. Effects of bedding planes on fracture behavior of sandstone under semi-circular bending test[J]. Theoretical and Applied Fracture Mechanics,2020:102625.

    Google Scholar

    [20] 黄达, 张永发, 朱谭谭, 等. 砂岩拉-剪力学特性试验研究[J]. 岩土工程学报,2019,41(2):272 − 276. [HUANG Da, ZHANG Yongfa, ZHU Tantan, et al. Experimental study on tension-shear mechanical behavior of sandstone[J]. Chinese Journal of Geotechnical Engineering,2019,41(2):272 − 276. (in Chinese with English abstract)

    Google Scholar

    [21] E·霍克, 卢平(译). 利用霍克-布朗破坏准则估算莫尔-库伦准则的摩擦角和粘聚力[J]. 有色金属科学与工程,1992(3):175 − 177. [E HOEK, LU Ping(trans). Estimation of friction Angle and cohesion of Mohr-Coulomb Criterion by Hawk-Brown failure Criterion[J]. Jiangxi Nonferrous Metals,1992(3):175 − 177. (in Chinese)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(4)

Article Metrics

Article views(2146) PDF downloads(200) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint