2021 Vol. 48, No. 4
Article Contents

HU Peng, WEN Zhang, HU Xinli, ZHANG Yuming. Estimation of hydraulic conductivity of landslides based on support vector machine method optimized with genetic algorithm[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 160-168. doi: 10.16030/j.cnki.issn.1000-3665.202007039
Citation: HU Peng, WEN Zhang, HU Xinli, ZHANG Yuming. Estimation of hydraulic conductivity of landslides based on support vector machine method optimized with genetic algorithm[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 160-168. doi: 10.16030/j.cnki.issn.1000-3665.202007039

Estimation of hydraulic conductivity of landslides based on support vector machine method optimized with genetic algorithm

More Information
  • Estimation of hydraulic conductivities (K) of the rock media in a landslide is the basis for the study of the seepage field and multi-dimensional evolution of the reservoir bank slope. Traditionally, in-situ tests and indoor tests are used to determine the hydraulic conductivity of landslide rock and soil, but this method is costly and the test location has a certain randomness. In this study, the Majiagou landslide in the Three Gorges Reservoir area is taken as an example, and a method for inverting the K values of the deformed rock and soil mass using the groundwater level dynamic monitoring data is proposed. The basic idea is as follows. First, build a numerical model of the landslide based on the landslide survey data and water level observation data. Afterwards, SPSS is used to generate different orthogonal test combinations of hydraulic conductivity, substitute the hydraulic conductivity into the numerical model to calculate the water levels of the monitoring wells, and obtain the data of hydraulic conductivity and corresponding simulated water levels. Finally, the support vector machine (SVM) optimized with the genetic algorithm (GA) is used to construct a nonlinear mapping relationship between slope water level and hydraulic conductivities (K). The results obtained are then replaced for the monitored water levels to obtain the hydraulic conductivities of the landslide rock and soil which is used to develop the finite element model. The model is then verified by comparing the simulated water levels with the observed water levels. The inversion of the Majiagou landslide hydraulic conductivity shows that the SVM optimized with GA yields a good agreement between the simulated and real data and has a very efficient and accurate search results. The inversion accuracy of K based on the GA-SVM method meets the needs of practical applications.

  • 加载中
  • [1] 向家松, 文宝萍, 陈明, 等. 结构复杂滑坡活动对库水位变化的响应特征—以三峡库区柴湾滑坡为例[J]. 水文地质工程地质,2017,44(4):71 − 77. [XIANG Jiasong, WEN Baoping, CHEN Ming, et al. Activity response of a landslide with complex structure to fluctuation of reservoir water level: a case study of the Chaiwan landslide in the Three Gorges Reservoir[J]. Hydrogeology & Engineering Geology,2017,44(4):71 − 77. (in Chinese with English abstract)

    Google Scholar

    [2] SUN G H, ZHENG H, TANG H M, et al. Huangtupo landslide stability under water level fluctuations of the Three Gorges reservoir[J]. Landslides,2016,13(5):1167 − 1179. doi: 10.1007/s10346-015-0637-7

    CrossRef Google Scholar

    [3] HU X L, ZHANG M, SUN M J, et al. Deformation characteristics and failure mode of the Zhujiadian landslide in the Three Gorges Reservoir, China[J]. Bulletin of Engineering Geology and the Environment,2015,74(1):1 − 12. doi: 10.1007/s10064-013-0552-x

    CrossRef Google Scholar

    [4] 周剑, 邓茂林, 李卓骏, 等. 三峡库区浮托减重型滑坡对库水升降的响应规律[J]. 水文地质工程地质,2019,46(5):136 − 143. [ZHOU Jian, DENG Maolin, LI Zhuojun, et al. Response patterns of buoyancy weight loss landslides under reservoir water level fluctuation in the Three Gorges Reservoir area[J]. Hydrogeology & Engineering Geology,2019,46(5):136 − 143. (in Chinese with English abstract)

    Google Scholar

    [5] 黄发明, 殷坤龙, 何涛, 等. 库岸滑坡地下水位时间序列混沌特征识别与PSO-LSSVM模型预测[J]. 地质科技情报,2015,34(6):186 − 192. [HUANG Faming, YIN Kunlong, HE Tao, et al. Chaotic characteristics identification and prediction using PSO-LSSVM model of reservoir landslide groundwater level time series[J]. Geological Science and Technology Information,2015,34(6):186 − 192. (in Chinese with English abstract)

    Google Scholar

    [6] SURYANARAYANA C, SUDHEER C, MAHAMMOOD V, et al. An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam, India[J]. Neurocomputing,2014,145:324 − 335. doi: 10.1016/j.neucom.2014.05.026

    CrossRef Google Scholar

    [7] HE Z B, WEN X H, LIU H, et al. A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region[J]. Journal of Hydrology,2014,509:379 − 386. doi: 10.1016/j.jhydrol.2013.11.054

    CrossRef Google Scholar

    [8] LAKSHMI PRASAD K, RASTOGI A K. Estimating net aquifer recharge and zonal hydraulic conductivity values for Mahi Right Bank Canal project area, India by genetic algorithm[J]. Journal of Hydrology,2001,243(3/4):149 − 161.

    Google Scholar

    [9] 魏进兵, 邓建辉, 高春玉, 等. 三峡库区泄滩滑坡非饱和渗流分析及渗透系数反演[J]. 岩土力学,2008,29(8):2262 − 2266. [WEI Jinbing, DENG Jianhui, GAO Chunyu, et al. Unsaturated seepage analysis and back analysis of permeability coefficient for Xietan landslide in Three Gorges Reservoir area[J]. Rock and Soil Mechanics,2008,29(8):2262 − 2266. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2008.08.045

    CrossRef Google Scholar

    [10] 崔皓东, 朱岳明. 二滩高拱坝坝基渗流场的反演分析[J]. 岩土力学,2009,30(10):3194 − 3199. [CUI Haodong, ZHU Yueming. Back analysis of seepage field of Ertan high arch dam foundation[J]. Rock and Soil Mechanics,2009,30(10):3194 − 3199. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2009.10.052

    CrossRef Google Scholar

    [11] 姜谙男, 梁冰. 基于粒子群支持向量机的三维含水层渗流参数反馈识别[J]. 岩土力学,2009,30(5):1527 − 1531. [JIANG Annan, LIANG Bing. Feedback identifying seepage parameters of 3D aquifer based on particle swarm optimization and support vector machine[J]. Rock and Soil Mechanics,2009,30(5):1527 − 1531. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2009.05.059

    CrossRef Google Scholar

    [12] 倪沙沙, 迟世春. 基于粒子群支持向量机的高心墙堆石坝渗透系数反演[J]. 岩土工程学报,2017,39(4):727 − 734. [NI Shasha, CHI Shichun. Back analysis of permeability coefficient of high core rockfill dam based on particle swarm optimization and support vector machine[J]. Chinese Journal of Geotechnical Engineering,2017,39(4):727 − 734. (in Chinese with English abstract) doi: 10.11779/CJGE201704019

    CrossRef Google Scholar

    [13] 向家松, 文宝萍, 高幼龙, 等. 地下水位监测频率和时长对滑体渗透系数反演结果的影响[J]. 水文地质工程地质,2018,45(5):86 − 92. [XIANG Jiasong, WEN Baoping, GAO Youlong, et al. Effects of frequency and interval of groundwater monitoring on the inversion coefficients of permeability of materials of a landslide[J]. Hydrogeology & Engineering Geology,2018,45(5):86 − 92. (in Chinese with English abstract)

    Google Scholar

    [14] 李端有, 甘孝清. 滑坡体力学参数反分析研究[J]. 长江科学院院报,2005,22(6):44 − 48. [LI Duanyou, GAN Xiaoqing. Mechanical parameter back analysis of landslide[J]. Journal of Yangtze River Scientific Research Institute,2005,22(6):44 − 48. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-5485.2005.06.014

    CrossRef Google Scholar

    [15] SU H Z, LI X, YANG B B, et al. Wavelet support vector machine-based prediction model of dam deformation[J]. Mechanical Systems and Signal Processing,2018,110:412 − 427. doi: 10.1016/j.ymssp.2018.03.022

    CrossRef Google Scholar

    [16] SUN G H, ZHENG H, HUANG Y Y, et al. Parameter inversion and deformation mechanism of Sanmendong landslide in the Three Gorges Reservoir region under the combined effect of reservoir water level fluctuation and rainfall[J]. Engineering Geology,2016,205:133 − 145. doi: 10.1016/j.enggeo.2015.10.014

    CrossRef Google Scholar

    [17] 陈海洋, 滕彦国, 王金生. 基于GA-SVR的渗透系数参数反演方法[J]. 水文地质工程地质,2011,38(2):14 − 18. [CHEN Haiyang, TENG Yanguo, WANG Jinsheng. Methods of estimation of hydraulic conductivity with genetic algorithm-support vector regression machine[J]. Hydrogeology & Engineering Geology,2011,38(2):14 − 18. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2011.02.003

    CrossRef Google Scholar

    [18] 刘广润, 徐开祥. 三峡水库沿岸移民区地质灾害防治研究[J]. 中国地质灾害与防治学报,2003,14(4):1 − 4. [LIU Guangrun, XU Kaixiang. Investigation on prevention and control of geologic hazards in the migration area along bank of the Three Gorges reservoir[J]. The Chinese Journal of Geological Hazard and Control,2003,14(4):1 − 4. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2003.04.001

    CrossRef Google Scholar

    [19] ZHANG Y M, HU X L, TANNANT D D, et al. Field monitoring and deformation characteristics of a landslide with piles in the Three Gorges Reservoir area[J]. Landslides,2018,15(3):581 − 592. doi: 10.1007/s10346-018-0945-9

    CrossRef Google Scholar

    [20] 张玉明. 水库运行条件下马家沟滑坡—抗滑桩体系多场特征与演化机理研究[D]. 武汉: 中国地质大学(武汉), 2018.

    Google Scholar

    ZHANG Yuming. Multi-field characteristics and evolution mechanism of Majiagou landslide-stablizing piles system under reservoir operations[D]. Wuhan: China University of Geosciences(Wuhan), 2018. (in Chinese with English abstract)

    Google Scholar

    [21] CHANG C C, LIN C J. Libsvm:a library for support vector machinea library for support vector machine[J]. ACM Transactions on Intelligent Systems and Technology,2011,2(3):1 − 27.

    Google Scholar

    [22] 史峰, 王小川, 郁磊, 等. MATLAB神经网络30个案例分析[M]. 北京: 北京航空航天大学出版社, 2010: 102−135.

    Google Scholar

    SHI Feng, WANG Xiaochuan, YU Lei, et al. Analysis of 30 cases of MATLAB neural network[M]. Beijing: Beihang University Press, 2010: 102−135. (in Chinese)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(4)

Article Metrics

Article views(1492) PDF downloads(146) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint