2021 Vol. 48, No. 3
Article Contents

CHEN Shuxian, SHANG Ruihua, FENG Yucheng, WANG Zhiqiang, MA Teng. Effects of Xinglong Hydro-Junction on nitrogen distribution in the Hanjiang River riparian zone[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 182-190. doi: 10.16030/j.cnki.issn.1000-3665.202006056
Citation: CHEN Shuxian, SHANG Ruihua, FENG Yucheng, WANG Zhiqiang, MA Teng. Effects of Xinglong Hydro-Junction on nitrogen distribution in the Hanjiang River riparian zone[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 182-190. doi: 10.16030/j.cnki.issn.1000-3665.202006056

Effects of Xinglong Hydro-Junction on nitrogen distribution in the Hanjiang River riparian zone

More Information
  • A riparian zone, as the junction of surface water and groundwater, mainly controls the nitrogen cycle between surface water and groundwater through denitrification and other actions. Water conservancy projects will significantly change the hydrological environment of river regions, and affect the distribution and circulation of nitrogen in riparian zones. Exploring the influence mechanism of water conservancy projects on the riparian nitrogen cycle is of great practical significance for understanding the control and utilization of regional nitrogen. In this paper, the Xinglong Hydro-Junction is taken as the object, and three riparian zone sampling sections are set up in the upper and lower reaches of the project, with five sampling points in each section. TN, "tri-nitrogen" (refers to ${\rm{NH}}_4^+ $ -N, ${\rm{NO}}_2^- $ -N, ${\rm{NO}}_3^- $ -N) and relevant soil physical and chemical properties are analyzed for the collected 150 soil samples. The results show that (1) the nitrogen content in the riparian sediments in the upstream of the water conservancy project is significantly higher than that in the downstream, and the average content of total nitrogen and "three nitrogen" in section A is 1.12-3.27 times that in sections B and C of the downstream. (2) The horizontal variation trend of contents of TN and "tri-nitrogen" in the riparian zones of the three sections is not consistent, showing that TN content in the same section is higher in the embankment, and the sampling point in the embankment close to the embankment is the abrupt change point (sharp increase or decrease) of "tri-nitrogen" content. (3) The vertical distribution pattern of TN and "tri nitrogen" is similar: nitrogen content decreases rapidly from 0 to 60 cm, and irregular change occurs below 60 cm. Nitrogen content decreases from top to bottom. The Xinglong Dam mainly affects its upper reaches. Through water storage, the groundwater level of the upstream riparian zone rises, and the sediments are submerged for a long time, leading to the decrease of denitrification capacity. Due to the difference in microgeomorphology caused by levee in the same section, the groundwater in the levee is deeper than that outside the levee, and the denitrification capacity of the sediments in the levee is weaker than that outside the levee.

  • 加载中
  • [1] GREGORY S V, SWANSON F J, MCKEE W A, et al. An ecosystem perspective of riparian zones[J]. Bioscience,1991,41(8):540 − 551. doi: 10.2307/1311607

    CrossRef Google Scholar

    [2] VIDON P, ALLAN C, BURNS D, et al. Hot spots and hot moments in riparian zones: potential for improved water quality management[J]. Jawra Journal of the American Water Resources Association,2010,46(2):278 − 298. doi: 10.1111/j.1752-1688.2010.00420.x

    CrossRef Google Scholar

    [3] 李锐, 牛江波, 杨超, 等. 长江上游江津段河岸带对陆源氮磷的拦截作用研究[J]. 西南大学学报(自然科学版),2017,39(10):11 − 19. [LI Rui, NIU Jiangbo, YANG Chao, et al. Study on the interception of riparian to nitrogen and phosphorus at Deganba of Jiangjin in the upper reaches of the Yangtze River[J]. Journal of Southwest University (Natural Science Edition),2017,39(10):11 − 19. (in Chinese)

    Google Scholar

    [4] PETERJOHN W T, CORRELL D L. Nutrient dynamics in an agricultural watershed : observations on the role of a riparian forest[J]. Ecology,1984,65(5):1466 − 1475. doi: 10.2307/1939127

    CrossRef Google Scholar

    [5] HEFTING M M, CLEMENT J, BIENKOWSKI P, et al. The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe[J]. Ecological Engineering,2005,24(5):465 − 482. doi: 10.1016/j.ecoleng.2005.01.003

    CrossRef Google Scholar

    [6] SUN R, DENG W Q, YUAN X Z, et al. Riparian vegetation after dam construction on mountain rivers in China[J]. Ecohydrology,2014,7(4):1187 − 1195.

    Google Scholar

    [7] 郭劲松, 黄轩民, 张彬, 等. 三峡库区消落带土壤有机质和全氮含量分布特征[J]. 湖泊科学,2012,24(2):213 − 219. [GUO Jinsong, HUANG Xuanmin, ZHANG Bin, et al. Distribution characteristics of organic matter and total nitrogen in soils of water-levelfluctuating zone of Three Gorges Reservoir area[J]. Journal Lake Sciences,2012,24(2):213 − 219. (in Chinese with English abstract) doi: 10.18307/2012.0207

    CrossRef Google Scholar

    [8] 孔涛, 张德胜, 寇涌苹, 等. 浑河上游典型植被河岸带土壤有机碳、全氮和全磷分布特征[J]. 土壤,2014,46(5):793 − 798. [KONG Tao, ZHANG Desheng, KOU Yongping, et al. Soil organic carbon, total nitrogen and total phosphorus distribution of typical vegetation riparian zones in upper reaches of Hun River[J]. Soils,2014,46(5):793 − 798. (in Chinese with English abstract)

    Google Scholar

    [9] 张雷, 秦延文, 郑丙辉, 等. 三峡入库河流大宁河回水区浸没土壤及消落带土壤氮形态及分布特征[J]. 环境科学,2009,30(10):2884 − 2890. [ZHANG Lei, QIN Yanwen, ZHENG Binghui, et al. Nitrogen forms and its distribution character in immerged and water-level-fluctuating zone soils of the backwater reach from input river of Three Gorges Reservoir[J]. Chinese Journal of Environmental Science,2009,30(10):2884 − 2890. (in Chinese with English abstract)

    Google Scholar

    [10] 袁辉, 王里奥, 胡刚, 等. 三峡库区消落带受淹土壤氮和磷释放的模拟实验[J]. 环境科学研究,2008,21(1):103 − 106. [YUAN Hui, WANG Li'ao, HU Gang, et al. Release of N, P from submerged soil in the shore-area of Three Gorges Reservoir[J]. Research of Environmental Sciences,2008,21(1):103 − 106. (in Chinese with English abstract)

    Google Scholar

    [11] 邓青军, 唐仲华. 江汉平原水土地质环境综合监测与评价[J]. 水文地质工程地质,2014,41(4):131 − 135. [DENG Qingjun, TANG Zhonghua. Soil-groundwater geological environment integrated monitoring and evaluation in Jianghan Plain[J]. Hydrogeology & Engineering Geology,2014,41(4):131 − 135. (in Chinese with English abstract)

    Google Scholar

    [12] 李圣品, 李文鹏, 殷秀兰, 等. 全国地下水质分布及变化特征[J]. 水文地质工程地质,2019,46(6):1 − 8. [LI Shengpin, LI Wenpeng, YIN Xiulan, et al. Distribution and evolution characteristics of national groundwater quality from 2013 to 2017[J]. Hydrogeology & Engineering Geology,2019,46(6):1 − 8. (in Chinese with English abstract)

    Google Scholar

    [13] LIU W Z, XIONG Z Q, LIU H, et al. Catchment agriculture and local environment affecting the soil denitrification potential and nitrous oxide production of riparian zones in the Han River Basin, China[J]. Agricultural Ecosystems & Environment,2016,216:147 − 154.

    Google Scholar

    [14] 陈江军, 刘波, 蔡烈刚, 等. 基于多种方法的土壤重金属污染风险评价对比—以江汉平原典型场区为例[J]. 水文地质工程地质,2018,45(6):164 − 172. [CHEN Jiangjun, LIU Bo, CAI Liegang, et al. Comparison of risk assessment based on the various methods of heavy metals in soil: a case study for the typical field areas in the Jianghan Plain[J]. Hydrogeology & Engineering Geology,2018,45(6):164 − 172. (in Chinese with English abstract)

    Google Scholar

    [15] 王丽. 鄂豫陕交界地区生态环境保护与管理[J]. 中国经贸导刊,2015(22):60 − 61. [WANG Li. Ecological environment protection and management in the border area of Hubei, Henan and Shanxi[J]. China Economic & Trade Herald,2015(22):60 − 61. (in Chinese)

    Google Scholar

    [16] 张长征, 黄家文, 李凯, 等. 汉江兴隆水利枢纽库区两岸浸没治理[J]. 人民长江,2009,40(22):23 − 24. [ZHANG Changzheng, HUANG Jiawen, LI Kai, et al. Immersion treatment on the banks of Xionglong Hydropower Project on the Hanjiang River[J]. Yangtze River,2009,40(22):23 − 24. (in Chinese)

    Google Scholar

    [17] XIONG Z Q, GUO L D, ZHANG Q F, et al. Edaphic conditions regulate denitrification directly and indirectly by altering denitrifier abundance in wetlands along the Han River, China[J]. Environmental Science & Technology,2017,51(10):5483 − 5491.

    Google Scholar

    [18] 曾凯, 刘琳, 蔡义民, 等. 地下生态系统中氮素的循环及影响因素[J]. 草业科学,2017,34(3):502 − 514. [ZENG Kai, LIU Lin, CAI Yimin, et al. The nitrogen cycle and factors affecting it in the belowground ecosystem[J]. Pratacultural Science,2017,34(3):502 − 514. (in Chinese with English abstract)

    Google Scholar

    [19] 杜宁宁, 郭晋平, 陈东莉. 河岸带落叶松林土壤氮素空间格局研究[J]. 山西林业科技,2011,40(1):4 − 6. [DU Ningning, GUO Jinping, CHEN Dongli. Spatial pattern of soil nitrogen in the riparian zone of larch forest[J]. Shanxi Forestry Science and Technology,2011,40(1):4 − 6. (in Chinese with English abstract)

    Google Scholar

    [20] 崔楠, 吕光辉, 刘晓星, 等. 胡杨、梭梭群落土壤理化性质及其相互关系[J]. 干旱区研究,2015,32(3):476 − 482. [CUI Nan, LV Guanghui, LIU Xiaoxing, et al. Soil physical-chemical properties of populus euphratica and haloxylon persicum communities and their relationship[J]. Arid Zone Research,2015,32(3):476 − 482. (in Chinese with English abstract)

    Google Scholar

    [21] 陈敏, 刘建虎, 叶成林, 等. 河岸带对氮磷的截留转化作用[J]. 云南农业,2017(9):77 − 80. [CHEN Ming, LIU Jianhu, YE Chenglin, et al. The interception and transformation of nitrogen and phosphorus in riparian zone[J]. Yunnan Agriculture,2017(9):77 − 80. (in Chinese)

    Google Scholar

    [22] 常超, 谢宗强, 熊高明, 等. 三峡水库蓄水对消落带土壤理化性质的影响[J]. 自然资源学报,2011,26(7):1236 − 1244. [CHANG Chao, XIE Zongqiang, XIONG Gaoming, et al. The effect of flooding on soil physical and chemical properties of riparian zone in the Three Gorges Reservoir[J]. Journal of Natural Resources,2011,26(7):1236 − 1244. (in Chinese with English abstract)

    Google Scholar

    [23] 白军红, 邓伟, 张玉霞, 等. 洪泛区天然湿地土壤有机质及氮素空间分布特征[J]. 环境科学,2002, 23(2):77 − 81. [BAI Junhong, DENG Wei, ZHANG Yuxia, et al. Spacial distribution characteristics of soil organic matter and nitrogen in the natural floodplain wetland[J]. Chinese Journal of Environmental Science,2002, 23(2):77 − 81. (in Chinese with English abstract)

    Google Scholar

    [24] SAHRAWAT K L. Organic matter accumulation in submerged soils[J]. Advances in Agronomy,2003,81:169 − 201.

    Google Scholar

    [25] 董元华, 徐琪. 水成土壤演化中有机质含量变化的研究[J]. 生态学报,1990,10(4):323 − 327. [DONG Yuanhua, XU Qi. Study on changes in organic matter content in the succession of hydro-morphic soils[J]. Acta Ecologica Sinica,1990,10(4):323 − 327. (in Chinese with English abstract)

    Google Scholar

    [26] 孙志高, 刘景双. 湿地土壤的硝化-反硝化作用及影响因素[J]. 土壤通报,2008,39(6):1462 − 1467. [SUN Zhigao, LIU Jingshuang. Nitrification-denitrification and its affecting factors in wetland soil-A review[J]. Chinese Journal of Soil Science,2008,39(6):1462 − 1467. (in Chinese with English abstract)

    Google Scholar

    [27] 金相灿, 崔哲, 王圣瑞. 连续淹水培养条件下沉积物和土壤的氮素矿化过程[J]. 土壤通报,2006, 37(5):909 − 915. [JIN Xiangcan, CUI Zhe, WANG Shengrui. Nitrogen mineralization processes of sediments and soil under continuously waterlogged incubation conditions[J]. Chinese Journal of Soil Science,2006, 37(5):909 − 915. (in Chinese with English abstract)

    Google Scholar

    [28] 白军红, 欧阳华, 邓伟, 等. 湿地氮素传输过程研究进展[J]. 生态学报,2005, 25(2):326 − 333. [BAI Junhong, OUYANG Hua, DENG Wei, et al. A review on nitrogen transmission processes in natural wetlands[J]. Acta Ecologica Sinica,2005, 25(2):326 − 333. (in Chinese with English abstract)

    Google Scholar

    [29] 王勤, 刘广军, 张凯, 等. 合肥老城区绿地土壤pH和氮磷的空间变异特征[J]. 长江流域资源与环境,2014,23(8):1173 − 1178. [WANG Qin, LIU Guangjun, ZHANG Kai, et al. Spatial variability of soil pH, nitrogen and phosphorus of urban Greenland in central Hefei[J]. Resources and Environment in the Yangtze Basin,2014,23(8):1173 − 1178. (in Chinese with English abstract)

    Google Scholar

    [30] 赵清贺, 刘倩, 马丽娇, 等. 黄河中下游典型河岸带土壤性质空间变异及其对环境的响应[J]. 应用生态学报,2015,26(12):3795 − 3802. [ZHAO Qinghe, LIU Qian, MA Lijiao, et al. Spatial variation in riparian soil properties and its response to environmental factors in typical reach of the middle and lower reaches of the Yellow River[J]. Chinese Journal of Applied Ecology,2015,26(12):3795 − 3802. (in Chinese with English abstract)

    Google Scholar

    [31] 王智, 陈刚亮, 李建华. 崇明岛不同类型河岸带土壤碳氮分布特征[J]. 安徽农业科学,2013,41(22):9266 − 9269. [WANG Zhi, CHEN Gangliang, LI Jianhua. Distribution characteristics of soil carbon and nitrogen in different riparian zones in Chongming Island[J]. Journal of Anhui Agricultural Sciences,2013,41(22):9266 − 9269. (in Chinese with English abstract)

    Google Scholar

    [32] 冉炜, 沈其荣, 郑金伟, 等. 土壤硝化作用过程中亚硝态氮的累积研究[J]. 土壤学报,2000, 37(4):474 − 481. [RAN Wei, SHENG Qirong, ZHENG Jinwei, et al. Nitrite accumulation in the process of nitrification in different agricultural soils of China[J]. Acta Pedologica Sinica,2000, 37(4):474 − 481. (in Chinese with English abstract)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(1468) PDF downloads(176) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint