2021 Vol. 48, No. 3
Article Contents

ZHANG Chunchao, HOU Xinwei, LI Xiangquan, WANG Zhenxing, GUI Chunlei, ZUO Xuefeng. Hydrogeochemical characteristics and evolution mechanism of karst groundwater in the catchment area of the Sangu Spring[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 62-71. doi: 10.16030/j.cnki.issn.1000-3665.202004059
Citation: ZHANG Chunchao, HOU Xinwei, LI Xiangquan, WANG Zhenxing, GUI Chunlei, ZUO Xuefeng. Hydrogeochemical characteristics and evolution mechanism of karst groundwater in the catchment area of the Sangu Spring[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 62-71. doi: 10.16030/j.cnki.issn.1000-3665.202004059

Hydrogeochemical characteristics and evolution mechanism of karst groundwater in the catchment area of the Sangu Spring

  • The karst groundwater in the catchment area of the Sangu Spring plays an important supporting role in the residents' living and coal base construction in southeastern Shanxi Province.With the large-scale coal mining and the intensification of human activities, the hydrochemistry of the regional karst groundwater has changed drastically. In this study, 125 karst groundwater, 14 surface water and 14 rain water samples were collected and tested. The descriptive statistical analysis, coefficient of variation analysis, hydrogen and oxygen stable isotopes, Gibbs model, ion correlation, mineral saturation index and factor analysis are comprehensively used to determine the replenishment sources of the karst groundwater, the differences of hydrochemical characteristics and evolution mechanism among the subsystems. The results show that the δD and δ18O values of the karst groundwater range from −77‰ to −42‰ and from −10.6‰ to −4.5‰, respectively, and the data points fall near the local meteoric water line (LMWL), indicating that the karst groundwater are mainly recharged by infiltration from precipitation. The hydrochemical characteristics and hydrogeochemical evolution processes between subsystems Ⅰ and Ⅱ-Ⅲwere obviously different. The karst groundwater of subsystem Ⅰhas low salinity and is soft water, and 73% of the groundwater is of HCO3—Ca(Mg) type. However, the karst groundwater in subsystems Ⅱ and Ⅲ changes from low salinity and soft water to high salinity and hard water, and 36% to 40% of the water is of HCO3·SO4—Ca·Mg type and 24% to 45%, of SO4·HCO3—Ca type. Factor analyses show that the hydrochemical evolution processes of the regional karst groundwater are mainly controlled by water-rock interactions, human activities, leakage of surface water and local fissure water. Hydrochemical compositions of < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > ${\rm{HCO}}_3^- $ < /span > < img text_id='' class='formula-img' style='display:none;' src='202004059_Z-20210115144440.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='202004059_Z-20210115144440.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='202004059_Z-20210115144440.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='202004059_Z-20210115144440.png'/ > , < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > ${\rm{SO}}_4^{2-} $ < /span > < img text_id='' class='formula-img' style='display:none;' src='202004059_Z-20210115144600.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='202004059_Z-20210115144455.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='202004059_Z-20210115144455.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='202004059_Z-20210115144455.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='202004059_Z-20210115144455.png'/ > , Ca2+ and Mg2+are mainly controlled by water-rock interactions. A higher concentration of < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > ${\rm{SO}}_4^{2-} $ < /span > < img text_id='' class='formula-img' style='display:none;' src='202004059_Z-20210115144600.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='202004059_Z-20210115144455.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='202004059_Z-20210115144455.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='202004059_Z-20210115144455.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='202004059_Z-20210115144455.png'/ > is controlled by mining activities, < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > ${\rm{NO}}_3^- $ < /span > < img text_id='' class='formula-img' style='display:none;' src='202004059_Z-20210115144531.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='202004059_Z-20210115144531.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='202004059_Z-20210115144531.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='202004059_Z-20210115144531.png'/ > is controlled by agriculture activities and Cland Na+are controlled by sewage discharge and leakage of fissure water. The results will be instructive for improving the management and utilization of groundwater resources for the local government.

  • 加载中
  • [1] KOLLARITS S, KUSCHNIG G, VESELIC M, et al. Decision-support systems for groundwater protection: innovative tools for resource management[J]. Environmental Geology,2006,49(6):840 − 848. doi: 10.1007/s00254-006-0179-3

    CrossRef Google Scholar

    [2] GHASEMIZADEH R, HELLWEGER F, BUTSCHER C, et al. Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico[J]. Hydrogeology Journal,2012,20(8):1441 − 1461. doi: 10.1007/s10040-012-0897-4

    CrossRef Google Scholar

    [3] 何守阳, 朱立军, 董志芬, 等. 典型岩溶地下水系统地球化学敏感性研究[J]. 环境科学,2010,31(5):1176 − 1182. [HE Shouyang, ZHU Lijun, DONG Zhifang, et al. Study on geochemical susceptivity of groundwater system in representative karstic regions[J]. Environmental Science,2010,31(5):1176 − 1182. (in Chinese with English abstract)

    Google Scholar

    [4] 刘再华, 袁道先. 中国典型表层岩溶系统的地球化学动态特征及其环境意义[J]. 地质论评,2000,46(3):324 − 327. [LIU Zaihua, YUAN Daoxian. Features of geochemical variations in typical epikarst systems of China and their environmental significance[J]. Geological Review,2000,46(3):324 − 327. (in Chinese with English abstract) doi: 10.3321/j.issn:0371-5736.2000.03.014

    CrossRef Google Scholar

    [5] 徐尚全, 杨平恒, 殷建军, 等. 重庆雪玉洞岩溶地下河地球化学敏感性研究[J]. 环境科学,2013,34(1):77 − 83. [XU Shangquan, YANG Pingheng, YIN Jianjun, et al. Research on the sensitivity of geochemical of underground river in Chongqing Xueyu cave[J]. Environmental Science,2013,34(1):77 − 83. (in Chinese with English abstract)

    Google Scholar

    [6] 张超, 张保祥, 张吉圣, 等. 肥城市岩溶水水化学特征及形成机制[J]. 中国岩溶,2018,37(5):698 − 707. [ZHANG Chao, ZHANG Baoxiang, ZHANG Jisheng, et al. Analysis of hydrochemical characteristics and formation mechanism of karst water in Feicheng City[J]. Carsologica Sinica,2018,37(5):698 − 707. (in Chinese with English abstract)

    Google Scholar

    [7] 霍俊伊, 于奭, 张清华, 等. 湘西峒河流域水化学特征及无机碳通量计算[J]. 水文地质工程地质,2019,46(4):64 − 72. [HUO Junyi, YU Shi, ZHANG Qinghua, et al. Hydrochemical characteristics and estimation of the Dissolved inorganic carbon flux in the Donghe River Basin of western Hunan[J]. Hydrogeology & Engineering Geology,2019,46(4):64 − 72. (in Chinese with English abstract)

    Google Scholar

    [8] 殷晓曦, 陈陆望, 谢文苹, 等. 采动影响下矿区地下水主要水-岩作用与水化学演化规律[J]. 水文地质工程地质,2017,44(5):33 − 39. [YIN Xiaoxi, CHEN Luwang, XIE Wenping, et al. Main water-rock interactions and hydrochemical evolution in the aquifers under the mining-induced disturbance in a mining district[J]. Hydrogeology & Engineering Geology,2017,44(5):33 − 39. (in Chinese with English abstract)

    Google Scholar

    [9] 黄奇波, 覃小群, 程瑞瑞, 等. 左江中游岩溶峰林区河流交互带水化学特征与控制因素[J]. 水文地质工程地质,2019,46(5):1 − 8. [HUANG Qibo, QIN Xiaoqun, CHENG Ruirui, et al. Hydrochenmical characteristics and control factors of karst hyporheic zones in the karst peak forest region of the middle reaches of the Zuo River[J]. Hydrogeology & Engineering Geology,2019,46(5):1 − 8. (in Chinese with English abstract)

    Google Scholar

    [10] 刘英学, 梁韵, 乔梁. 邢台百泉岩溶地下水系统水-岩反应特征分析[J]. 南水北调与水利科技,2009,7(4):63 − 66. [LIU Yingxue, LIANG Yun, QIAO Liang. Analysis on water-rock reaction characteristics of groundwater system in Xingtai-Baiquan springs[J]. South-to-North Water Transfers and Water Science & Technology,2009,7(4):63 − 66. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-1683.2009.04.018

    CrossRef Google Scholar

    [11] 邓启军, 李方红, 李伟, 等. 蒲阳河流域地下水水化学及同位素特征[J]. 水文地质工程地质,2017,44(2):8 − 14. [DENG Qijun, LI Fanghong, LI Wei, et al. The chemical and isotopes characteristic of groundwater in Puyang river basin[J]. Hydrogeology & Engineering Geology,2017,44(2):8 − 14. (in Chinese with English abstract)

    Google Scholar

    [12] 张军以, 王腊春, 苏维词, 等. 岩溶地区人类活动的水文效应研究现状及展望[J]. 地理科学进展,2014,33(8):1125 − 1135. [ZHANG Junyi, WANG Lachun, SU Weici, et al. Status and prospect of the hydrological effects of human activities in the Karst area[J]. Progress in Geography,2014,33(8):1125 − 1135. (in Chinese with English abstract) doi: 10.11820/dlkxjz.2014.08.013

    CrossRef Google Scholar

    [13] 刘绍华, 郭芳, 姜光辉, 等. 桂林市峰林平原区岩溶水文地球化学特征[J]. 地球与环境,2015,43(1):55 − 65. [LIU Shaohua, GUO Fang, JIANG Guanghui, et al. Hydrogeochemical characteristics of peak forest plain in Guilin City, China[J]. Earth and Environment,2015,43(1):55 − 65. (in Chinese with English abstract)

    Google Scholar

    [14] 黄科云, 刘德深, 马祖陆, 等. 云南鹤庆西山岩溶地下水主要离子雨季和旱季对比及来源分析[J]. 地球与环境,2015,43(2):183 − 189. [HUANG Keyun, LIU Deshen, MA Zulu, et al. Major ion chemistry and their sources of karstic ground water from the Heqing west mountain, China during flood and dry seasons[J]. Earth and Environment,2015,43(2):183 − 189. (in Chinese with English abstract)

    Google Scholar

    [15] 蔡月梅, 蔡五田, 刘金巍, 等. 河南省某大型水源地岩溶水水化学及同位素特征[J]. 水文地质工程地质,2018,45(5):41 − 47. [CAI Yuemei, CAI Wutian, LIU Jinwei, et al. Chemical and isotopic characteristics of the karst groundwater in the wellfield in Henan Province[J]. Hydrogeology & Engineering Geology,2018,45(5):41 − 47. (in Chinese with English abstract)

    Google Scholar

    [16] 李慧清. 晋城市三姑泉域地下水生态现状分析及修复对策[J]. 山西水利科技,2018(2):61 − 64. [LI Huiqing. Analysis on the groundwater ecological status in the Sanguquan spring-feeding area of Jincheng City and restoration countermeasures[J]. Shanxi Hydrotechnics,2018(2):61 − 64. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-8139.2018.02.020

    CrossRef Google Scholar

    [17] 王振兴, 李向全, 侯新伟, 等. 煤炭开采条件下三姑泉域岩溶含水层保护评价[J]. 中国岩溶,2019,38(1):28 − 39. [WANG Zhenxing, LI Xiangquan, HOU Xinwei, et al. Karst aquifer protection evaluation to the Sangu spring basin under the condition of coal mining[J]. Carsologica Sinica,2019,38(1):28 − 39. (in Chinese with English abstract)

    Google Scholar

    [18] 刘晓红, 张永波. 山西晋城三姑泉域地下水资源评价[J]. 太原科技大学学报,2009,30(3):261 − 263. [LIU Xiaohong, ZHANG Yongbo. Groundwater resources evaluation on Sangu spring region of Jincheng of Shanxi Province[J]. Journal of Taiyuan University of Science and Technology,2009,30(3):261 − 263. (in Chinese with English abstract) doi: 10.3969/j.issn.1673-2057.2009.03.019

    CrossRef Google Scholar

    [19] 刘晓红, 张永波. 山西晋城三姑泉域岩溶地下水水质评价[J]. 山西建筑,2009,35(5):173 − 174. [LIU Xiaohong, ZHANG Yongbo. On the karst underwater water quality assessment of Sanguquan in Jincheng of Shanxi[J]. Shanxi Architecture,2009,35(5):173 − 174. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-6825.2009.05.108

    CrossRef Google Scholar

    [20] 许志峰, 张志祥, 刘晓霞. 三姑泉域水环境质量评价及水污染控制对策[J]. 地下水,2012,34(4):87 − 90. [XU Zhifeng, ZHANG Zhixiang, LIU Xiaoxia. Water environmental quality assessment and strategy for water pollution control in Sangu spring basin[J]. Ground Water,2012,34(4):87 − 90. (in Chinese with English abstract)

    Google Scholar

    [21] 侯新伟, 李向全, 王振兴, 等. 晋东能源基地水文地质环境地质调查报告[R]. 石家庄: 中国地质科学院水文地质环境地质研究所, 2016: 45-189.

    Google Scholar

    HOU Xinwei, LI Xiangquan, WANG Zhenxing, et al. Hydrogeological and environment geological survey report of Jindong energy base[R]. Shijiazhuang: Institute of Hydrogeology and Environmental Geology, 2016: 45-189. (in Chinese)

    Google Scholar

    [22] 黄平华, 陈建生, 宁超, 等. 焦作矿区地下水水化学特征及其地球化学模拟[J]. 现代地质,2010,24(2):369 − 376. [HUANG Pinghua, CHEN Jiansheng, NING Chao, et al. Hydrochemical characteristics and hydrogeochemical modeling of groundwater in the Jiaozuo mining district[J]. Geoscience,2010,24(2):369 − 376. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-8527.2010.02.023

    CrossRef Google Scholar

    [23] PIPER A M. A graphic procedure in the geochemical interpretation of water-analyses[J]. Eos, Transactions American Geophysical Union,1944,25(6):914 − 928. doi: 10.1029/TR025i006p00914

    CrossRef Google Scholar

    [24] 韦虹, 吴锦奎, 沈永平, 等. 额尔齐斯河源区融雪期积雪与河流的水化学特征[J]. 环境科学,2016,37(4):1345 − 1352. [WEI Hong, WU Jinkui, SHEN Yongping, et al. Hydrochemical characteristics of snow meltwater and river water during snow-melting period in the headwaters of the Ertis River, Xinjiang[J]. Environmental Science,2016,37(4):1345 − 1352. (in Chinese with English abstract)

    Google Scholar

    [25] CAROL E, MAS-PLA J, KRUSE E. Interaction between continental and estuarine waters in the wetlands of the northern coastal plain of Samborombón Bay, Argentina[J]. Applied Geochemistry,2013,34:152 − 163. doi: 10.1016/j.apgeochem.2013.03.006

    CrossRef Google Scholar

    [26] HUANG G X, SUN J C, ZHANG Y, et al. Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area, South China[J]. Science of the Total Environment,2013,463/464:209 − 221. doi: 10.1016/j.scitotenv.2013.05.078

    CrossRef Google Scholar

    [27] LIU F, SONG X F, YANG L H, et al. The role of anthropogenic and natural factors in shaping the geochemical evolution of groundwater in the Subei Lake basin, Ordos energy base, Northwestern China[J]. Science of the Total Environment,2015,538:327 − 340. doi: 10.1016/j.scitotenv.2015.08.057

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(1234) PDF downloads(24) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint