Citation: | YANG Ping, DIAO Pengcheng, ZHANG Ting, YANG Guoqing. A study of the influences of freezing temperature and thawing conditions on physical properties of marine soft soil before and after freezing-thawing[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 96-104. doi: 10.16030/j.cnki.issn.1000-3665.202003010 |
Difference in physical properties of marine soft clay before and after freezing-thawing is the key to study the thawing-settlement. This paper takes the typical soft clay in Ningbo as the research object, and the temperature (−5 ℃, −10 ℃ and −15 ℃) and the thawing conditions (forced thawing and natural thawing) are considered as the influencing factors. Indoor simulation experiment of freezing-thawing process was conducted to quantitatively analyze the differences in physical properties before and after freezing-thawing and to reveal the cause of the difference. The research results show that freezing and thawing results in the redistribution of physical parameters such as moisture content, dry density, pore ratio and permeability of the marine soft clay along the direction of freezing gradient. With the decrease in the cold junction temperature by 1 ℃, the change degree of water content, dry density and void ratio decreases by about 4% − 8%. When forced thawing is adopted, the change degree of soil moisture content is reduced by about 23%, and the change degree of dry density and void ratio is reduced by about 50%. However, the essential reason that different freezing-thawing conditions have various influences on physical parameters is the different amount of water migration and phase variables under different conditions. Thus, exploring water migration and revealing the effects on physical parameter is worthy of further study. The change in physical parameters of marine soft clay before and after freezing-thawing is closely related to the cold junction temperature and the thawing method, and the degree of change is easy to directly affect thawing-settlement. When designing the freezing method of marine soft clay and constructing, reasonable freezing-thawing methods should be selected to reduce the difference in physical properties.
[1] | ROMAN L T, ZHANG Z. Effect of freezing-thawing on the physico-mechanical properties of a Morianic clayey loam[J]. Soil Mechanics and Foundation Engineering,2010,47(3):96 − 101. doi: 10.1007/s11204-010-9095-3 |
[2] | WANG D Y, MA W, NIU Y H, et al. Effects of cyclic freezing and thawing on mechanical properties of Qinghai–Tibet clay[J]. Cold Regions Science and Technology,2007,48(1):34 − 43. doi: 10.1016/j.coldregions.2006.09.008 |
[3] | 杨国清, 杨平, 何文龙, 等. 海相人工冻土热物理特性试验研究[J]. 南京林业大学学报(自然科学版),2017,41(1):170 − 176. [YANG Guoqing, YANG Ping, HE Wenlong, et al. Experiment study of thermal physical properties of marine artificial frozen soil[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2017,41(1):170 − 176. (in Chinese with English abstract) |
[4] | 陶勇, 杨平, 杨国清, 等. 冻融作用对海相软土压缩性及抗剪强度影响研究[J]. 冰川冻土, 2019, 41(3): 637 −645. TAO Yong, YANG Ping, YANG Guoqing, et al. A study on influence of freezing and thawing on compressibility and shear strength of marine soft soil[J]. Journal of Glaciology and Geocryology, 2019, 41(3): 637 − 645. (in Chinese with English abstract) |
[5] | 丁智, 魏新江, 庄家煌, 等. 地铁列车荷载下冻融土刚度软化试验研究[J]. 岩石力学与工程学报,2018,37(4):987 − 995. [DING Zhi, WEI Xinjiang, ZHUANG Jiahuang, et al. Experimental study on stiffness softening of frozen-thawed soil under subway loading[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(4):987 − 995. (in Chinese with English abstract) |
[6] | 丁智, 洪其浩, 魏新江, 等. 地铁列车荷载下人工冻融软土微观试验研究[J]. 浙江大学学报(工学版),2017,51(7):1291 − 1299. [DING Zhi, HONG Qihao, WEI Xinjiang, et al. Experimental study on micro-structure of artificial freezing and thawing soft soil under subway train load[J]. Journal of Zhejiang University(Engineering Science),2017,51(7):1291 − 1299. (in Chinese with English abstract) doi: 10.3785/j.issn.1008-973X.2017.07.004 |
[7] | 李国玉, 马巍, 李宁, 等. 冻融对压实黄土工程地质特性影响的试验研究[J]. 水利与建筑工程学报,2010,8(4):5 − 7. [LI Guoyu, MA Wei, LI Ning, et al. Experimental research on impact of freezing and thawing on geotechnical properties of compacted loess[J]. Journal of Water Resources and Architectural Engineering,2010,8(4):5 − 7. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-1144.2010.04.002 |
[8] | 毕贵权, 张侠, 李国玉, 等. 冻融循环对黄土物理力学性质影响的试验[J]. 兰州理工大学学报,2010,36(2):114 − 117. [BI Guiquan, ZHANG Xia, LI Guoyu, et al. Experiment of impact of freezing-thawing cycle on physico-mechanical properties of loess[J]. Journal of Lanzhou University of Technology,2010,36(2):114 − 117. (in Chinese with English abstract) doi: 10.3969/j.issn.1673-5196.2010.02.027 |
[9] | IWATA S. Driving force for water migration in frozen clayey soil[J]. Soil Science and Plant Nutrition,1980,26(2):215 − 227. doi: 10.1080/00380768.1980.10431205 |
[10] | 杨成松, 何平, 程国栋, 等. 冻融作用对土体干容重和含水量影响的试验研究[J]. 岩石力学与工程学报,2003,22(增刊2):2695 − 2699. [YANG Chengsong, HE Ping, CHENG Guodong, et al. Testing study on influence of freezing and thawing on dry density and water content of soil[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(Sup2):2695 − 2699. (in Chinese with English abstract) |
[11] | 师华强, 倪万魁, 刘魁, 等. 冻融循环作用对黄土压缩性的影响[J]. 水文地质工程地质,2012,39(3):45 − 48. [SHI Huaqiang, NI Wankui, LIU Kui, et al. The impact of the freezing-thawing cycle to compression of the loess[J]. Hydrogeology & Engineering Geology,2012,39(3):45 − 48. (in Chinese with English abstract) |
[12] | 周泓, 张泽, 秦琦, 等. 冻融循环作用下黄土基本物理性质变异性研究[J]. 冰川冻土,2015,37(1):162 − 168. [ZHOU Hong, ZHANG Ze, QIN Qi, et al. Research on variability of basic physical properties of loess under freezing-thawing cycles[J]. Journal of Glaciology and Geocryology,2015,37(1):162 − 168. (in Chinese with English abstract) |
[13] | KONRAD J M. Influence of overconsolidation on the freezing characteristics of a clayey silt[J]. Canadian Geotechnical Journal,1989,26(1):9 − 21. doi: 10.1139/t89-002 |
[14] | TANG Y Q, YAN J J. Effect of freeze–thaw on hydraulic conductivity and microstructure of soft soil in Shanghai area[J]. Environmental Earth Sciences,2015,73(11):7679 − 7690. doi: 10.1007/s12665-014-3934-x |
[15] | ZHENG Y, MA W, MU Y H, et al. Analysis of soil structures and the mechanisms under the action of freezing and thawing cycles[C]//16th International Conference on Cold Regions Engineering, July 19 − 22, 2015, Salt Lake City, Utah. Reston, VA, USA: American Society of Civil Engineers, 2015.: 25 − 33. |
[16] | 郑郧, 马巍, 邴慧. 冻融循环对土结构性影响的试验研究及影响机制分析[J]. 岩土力学,2015,36(5):1282 − 1287. [ZHENG Yun, MA Wei, BING Hui. Impact of freezing and thawing cycles on structure of soils and its mechanism analysis by laboratory testing[J]. Rock and Soil Mechanics,2015,36(5):1282 − 1287. (in Chinese with English abstract) |
[17] | 房建宏, 陈鑫, 徐安花, 等. 冻融循环对青藏红黏土物理力学性质影响试验研究[J]. 冰川冻土,2018,40(1):62 − 69. [FANG Jianhong, CHEN Xin, XU Anhua, et al. Experimental study of the influence of freezing-thawing cycles on physical and mechanical properties of Qinghai-Tibet red clay[J]. Journal of Glaciology and Geocryology,2018,40(1):62 − 69. (in Chinese with English abstract) |
[18] | 杨平. 原状土与冻融土物理力学性能差异性研究[J]. 南京林业大学学报(自然科学版),2001,25(2):68 − 70. [YANG Ping. Study on the difference of physical and mechanical properties between original and thawing soil[J]. Journal of Nanjing Forestry University,2001,25(2):68 − 70. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-2006.2001.02.016 |
[19] | VIKLANDER P. Permeability and volume changes in till due to cyclic freeze/thaw[J]. Canadian Geotechnical Journal,1998,35(3):471 − 477. doi: 10.1139/t98-015 |
[20] | 肖东辉, 冯文杰, 张泽, 等. 冻融循环作用下黄土渗透性与其结构特征关系研究[J]. 水文地质工程地质,2015,42(4):43 − 49. [XIAO Donghui, FENG Wenjie, ZHANG Ze, et al. Research on the relationship between permeability and construction feature of loess under the freeze-thaw cycles[J]. Hydrogeology and Engineering Geology,2015,42(4):43 − 49. (in Chinese with English abstract) |
[21] | 许健, 王掌权, 任建威, 等. 原状与重塑黄土冻融过程渗透特性对比试验研究[J]. 工程地质学报,2017,25(2):292 − 299. [XU Jian, WANG Zhangquan, REN Jianwei, et al. Comparative experimental study on permeability of undisturbed and remolded loess under freezing-thawing condition[J]. Journal of Engineering Geology,2017,25(2):292 − 299. (in Chinese with English abstract) |
[22] | 肖东辉, 冯文杰, 张泽, 等. 冻融循环对兰州黄土渗透性变化的影响[J]. 冰川冻土,2014,36(5):1192 − 1198. [XIAO Donghui, FENG Wenjie, ZHANG Ze, et al. Research on the Lanzhou loess' s permeabilities changing with freezing-thawing cycles[J]. Journal of Glaciology and Geocryology,2014,36(5):1192 − 1198. (in Chinese with English abstract) |
[23] | KONRAD J M, SAMSON M. Influence of freezing temperature on hydraulic conductivity of silty clay[J]. Journal of Geotechnical and Geoenvironmental Engineering,2000,126(2):180 − 187. doi: 10.1061/(ASCE)1090-0241(2000)126:2(180) |
[24] | 连江波, 张爱军, 郭敏霞, 等. 反复冻融循环对黄土孔隙比及渗透性的影响[J]. 人民长江,2010,41(12):55 − 58. [LIAN Jiangbo, ZHANG Aijun, GUO Minxia X, et al. Influence of iterative freezing-thawing on void ratio and permeability coefficient of loess[J]. Yangtze River,2010,41(12):55 − 58. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4179.2010.12.014 |
[25] | 张婷, 杨平. 土体单向冻结对土中水分迁移的影响[J]. 南京林业大学学报(自然科学版),2013,37(1):117 − 121. [ZHANG Ting, YANG Ping. Effects of unilateralist freezing on the moisture migration of soil[J]. Journal of Nanjing Forestry University(Natural Sciences Edition),2013,37(1):117 − 121. (in Chinese with English abstract) |
Particle analysis curve
Schematic diagram of frost heaving and hawing settlement instrument
Moisture content changes of the clay under the influence of different temperatures
Moisture content changes of clay under the influence of different thawing ways
Changes in dry density and void ratio at different heights under the influence of temperatures
Changes in dry density and void ratio at different heights under the influence of different thawing ways
Changes in void ratio and permeability coefficient, dry density and permeability coefficient under the influence of different freezing temperatures