2021 Vol. 48, No. 1
Article Contents

ZHANG Zhidong, FAN Xiaoyi, JIANG Yuanjun. Particle sequence distribution and the effect of particle size on the impact effect in a fluidized landslide-debris flow[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 49-59. doi: 10.16030/j.cnki.issn.1000-3665.202001005
Citation: ZHANG Zhidong, FAN Xiaoyi, JIANG Yuanjun. Particle sequence distribution and the effect of particle size on the impact effect in a fluidized landslide-debris flow[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 49-59. doi: 10.16030/j.cnki.issn.1000-3665.202001005

Particle sequence distribution and the effect of particle size on the impact effect in a fluidized landslide-debris flow

More Information
  • The severity of a landslide-debris flow is determined by such factors as the speed, deposition morphology and impact force of the sliding body. Differences in the lithological characteristics and structural distribution of the sliding source area lead to differences in the particle order distribution and particle size of the sliding body. During the movement, the collision, friction, and jumping between the particles affect the degree of hazard of the landslide-debris flow. Based on the physical model test, the dimensional discrete element software PFC3D is used to explore the influence of the particle order distribution and particle size on the speed, stacking morphology and impact force. The results show that the average velocity of particles in the debris flow is affected by both the particle size and the initial particle order in the slip source region, and the initial particle order has a greater effect on the average velocity of particles. The particle size has a greater effect on the particle order arrangement in the thickness direction, while the particle order distribution in the slip source area has a greater effect on the deposition morphology. Under the effect of particle-size segregation, the particle size becomes the main factor controlling the peak impact force and the slip source. The particle sequence distribution in the slip source area determines the accumulation morphology, which controls the impact force of the debris flow in the quasi-static accumulation stage.

  • 加载中
  • [1] FAN Xiaoyi, TIAN Shujun, ZHANG Youyi. Mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradation[J]. Journal of Mountain Science,2016,13(2):234 − 245. doi: 10.1007/s11629-014-3396-3

    CrossRef Google Scholar

    [2] YANG Qingqing, CAI Fei, UGAI Keizo, et al. Some factors affecting mass-front velocity of rapid dry granular flows in a large flume[J]. Engineering Geology,2011,122(3/4):249 − 260.

    Google Scholar

    [3] 葛云峰, 周婷, 霍少磊, 等. 高速远程滑坡运动堆积过程中的能量传递机制[J]. 地球科学,2019,44(11):3939 − 3949. [GE Yunfeng, ZHOU Ting, HUO Shaolei, et al. Energy Transfer Mechanism during Movement and Accumulation of Rockslide Avalanche[J]. Chinese Journal of Earth Science,2019,44(11):3939 − 3949. (in Chinese with English abstract)

    Google Scholar

    [4] 姚鑫, 余凯, 张永双, 等. “1·11”镇雄灾难性滑坡滑动机制−高孔隙度土流态化启动与滑动液化[J]. 岩石力学与工程学报,2014,33(5):1047 − 1054. [YAO Xin, YU Kai, ZHANG Yongshuang, et al. Mechanisms of catastrophic landslide on January 11, 2013, in Zhenxiong County: fluidization initiation and movement liquefaction of high porosity soil[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(5):1047 − 1054. (in Chinese with English abstract)

    Google Scholar

    [5] WANG Yufeng, CHENG Qiangong, SHI Anwen, et al. Sedimentary deformation structures in the Nyixoi Chongco rock avalanche: implications on rock avalanche transport mechanisms[J]. Landslides,2019,16(3):523 − 532. doi: 10.1007/s10346-018-1117-7

    CrossRef Google Scholar

    [6] WANG Yufeng CHENG Qiangong, YUAN Yunqiang, et al. Emplacement mechanisms of the Tagarma rock avalanche on the Pamir-western Himalayan syntaxis of the Tibetan Plateau, China[J]. Landslides,2020,17(3):527 − 542. doi: 10.1007/s10346-019-01298-1

    CrossRef Google Scholar

    [7] 张涛, 杨志华, 张永双, 等. 四川茂县新磨村高位滑坡铲刮作用分析[J]. 水文地质工程地质,2019,46(3):138 − 145. [ZHANG Tao, YANG Zhihua, ZHANG Yongshuang, et al. An analysis of the entrainment of the Xinmo high-position landslide in Maoxian County, Sichuan[J]. Hydrogeology and Engineering Geology,2019,46(3):138 − 145. (in Chinese with English abstract)

    Google Scholar

    [8] 李天话. 不同颗粒级配滑坡岩土体运动分选机制及冲击作用研究[D]. 绵阳: 西南科技大学, 2019.

    Google Scholar

    LI Tianhua. Movement segregation mechanism and impact effect of landslide in different gradation grades[D]. Mianyang, China: Southwest University of Science and Technology, 2019.

    Google Scholar

    [9] 郑光, 许强, 彭双麒. 滑坡-碎屑流的堆积特征及机理分析[J]. 工程地质学报,2019,27(4):842 − 852. [ZHENG Guang, XU Qiang, PENG Shuangqi. Mechanism analysis of the accumulation characteristics of rock avalanche[J]. Journal of Engineering Geology,2019,27(4):842 − 852. (in Chinese with English abstract)

    Google Scholar

    [10] 周公旦, 孙其诚, 崔鹏. 泥石流颗粒物质分选机理和效应[J]. 四川大学学报(工程科学版),2013,45(1):28 − 36. [ZHOU Gongdan, SUN Qicheng, CUI Peng. Study on the mechanisms of solids segregation in granular debris flows[J]. Journal of Sichuan University (Engineering Science Edition),2013,45(1):28 − 36. (in Chinese with English abstract)

    Google Scholar

    [11] 李天话, 樊晓一, 姜元俊. 滑坡碎屑流颗粒分选效应的数值模拟[J]. 西南科技大学学报,2019,34(1):26 − 33. [LI Tianhua, FAN Xiaoyi, JIANG Yuanjun. Numerical simulation study of solids segregation in landslide debris flow[J]. Journal of Southwest University of Science and Technology,2019,34(1):26 − 33. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-8755.2019.01.005

    CrossRef Google Scholar

    [12] DI LUZIO E, BIANCHI-FASANI G, ESPOSITO C, et al. Massive rock-slope failure in the Central Apennines (Italy): the case of the Campo di Giove rock avalanche[J]. Bulletin of Engineering Geology and the Environment,2004,63(1):1 − 12. doi: 10.1007/s10064-003-0212-7

    CrossRef Google Scholar

    [13] ZHOU Jiawen, CUI Peng, YANG Xingguo. Dynamic process analysis for the initiation and movement of the Donghekou landslide-debris flow triggered by the Wenchuan earthquake[J]. Journal of Asian Earth Sciences,2013,76:70 − 84. doi: 10.1016/j.jseaes.2013.08.007

    CrossRef Google Scholar

    [14] JIANG Yuanjun TOWHATA Ikuo. Experimental study of dry granular flow and impact behavior against a rigid retaining wall[J]. Rock Mechanics and Rock Engineering,2013,46(4):713 − 729. doi: 10.1007/s00603-012-0293-3

    CrossRef Google Scholar

    [15] MORIGUCHI S, BORJA R I, YASHIMA A, et al. Estimating the impact force generated by granular flow on a rigid obstruction[J]. Acta Geotechnica,2009,4(1):57 − 71. doi: 10.1007/s11440-009-0084-5

    CrossRef Google Scholar

    [16] 宋跃, 姜元俊, 王萌. 碎石垫层对碎屑流冲击棚洞的缓冲效应研究[J]. 岩石力学与工程学报,2018,37(10):2359 − 2369. [SONG Yue, JIANG Yuanjun, WANG Meng. Buffering effect of gravel cushion layer on the impact of dry granular flow against a rock shed[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(10):2359 − 2369. (in Chinese with English abstract)

    Google Scholar

    [17] 肖思友, 苏立君, 姜元俊. 碎屑流冲击柔性网的离散元仿真研究[J]. 岩土工程学报,2019,41(3):526 − 533. [XIAO Siyou, SU Lijun, JIANG Yuanjun. Numerical investigation on flexible barriers impacted by dry granular flows using DEM modeling[J]. Chinese Journal of Geotechnical Engineering,2019,41(3):526 − 533. (in Chinese with English abstract)

    Google Scholar

    [18] 张睿骁, 樊晓一, 姜元俊. 滑坡碎屑流冲击拦挡结构的离散元模拟[J]. 水文地质工程地质,2019,46(1):148 − 155. [ZHANG Ruixiao, FAN Xiaoyi, JIANG Yuanjun. Discrete element simulation of the impact of landslide debris flow on resistive structures[J]. Hydrogeology & Engineering Geology,2019,46(1):148 − 155. (in Chinese with English abstract)

    Google Scholar

    [19] BI Yuzhang, HE Siming LI Xinpo, et al. Effects of segregation in binary granular mixture avalanches down inclined chutes impinging on defending structures[J]. Environmental Earth Sciences,2016,75(3):263. doi: 10.1007/s12665-015-5076-1

    CrossRef Google Scholar

    [20] ALBABA A, LAMBERT S, NICOT F, et al. Relation between microstructure and loading applied by a granular flow to a rigid wall using DEM modeling[J]. Granular Matter,2015,17(5):603 − 616. doi: 10.1007/s10035-015-0579-8

    CrossRef Google Scholar

    [21] 王智德. 云南普宣高速公路顺层岩质边坡稳定性分析与开挖控制[D]. 武汉: 武汉理工大学, 2015.

    Google Scholar

    WANG Zhide Stability Analysis and Excavation Control of Bedding Rock Slope of Puli-Xuanwei Expressway in Yunnan Province[D]. Wuhan: Wuhan University of Technology, 2015. (in Chinese with English abstract)

    Google Scholar

    [22] 张玉明.水库运行条件下马家沟滑坡—抗滑桩体系多场特征与演化机理研究[D]. 武汉: 中国地质大学, 2018.

    Google Scholar

    ZHANG Yuming. Multi-field characteristics and evolution mechanism of Majiagou landslide-stablizing piles system under reservoir operations[D]. Wuhan: China University of Geosciences, 2018. (in Chinese with English abstract)

    Google Scholar

    [23] 岳建军. 缓倾外软硬互层型滑坡基本特征及失稳机理研究[D]. 成都: 成都理工大学, 2016.

    Google Scholar

    YUE Jianjun. Study on basic Characteristics and instability mechanism of the landslide with inter bedded soft and hard rock beddings of low dip angles [D]. Chengdu: Chengdu University of Technology, 2016. (in Chinese with English abstract)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Tables(12)

Article Metrics

Article views(2457) PDF downloads(73) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint