2025 Vol. 41, No. 4
Article Contents

HUANG Yuhan, FAN Daidu, WU Yijing. Sediment coarsening trend and genetic analysis of the sandy-muddy transitional zone off the Yangtze River Estuary[J]. Marine Geology Frontiers, 2025, 41(4): 47-59. doi: 10.16028/j.1009-2722.2025.039
Citation: HUANG Yuhan, FAN Daidu, WU Yijing. Sediment coarsening trend and genetic analysis of the sandy-muddy transitional zone off the Yangtze River Estuary[J]. Marine Geology Frontiers, 2025, 41(4): 47-59. doi: 10.16028/j.1009-2722.2025.039

Sediment coarsening trend and genetic analysis of the sandy-muddy transitional zone off the Yangtze River Estuary

More Information
  • A narrow sandy-muddy transitional zone exists offshore the Yangtze River Estuary, separating the muddy subaqueous delta from the sandy East China Sea shelf, which is highly sensitive to the changes in fluvial sediment supply and marine hydrodynamic dynamics. We investigated decadal-scale changes in surface sediment grain size offshore the estuary and examined two sediment cores in YE16 site collected in two consecutive years from the transitional zone, focusing on grain size, elemental ratios, organic compositions, and radionuclides. Results reveal a recent landward migration of the outer boundary of the transitional zone, obvious surface sediment coarsening, and rapid thickening of sandy layers overlying muddy deposits in YE16 site. Grain-size end-member (EM) analysis via the grain size-standard deviation method and component partitioning identified a pronounced increase in EM3 (medium-fine sand end-member) in YE16 cores. Sediments dominated by EM3 display lower C/N ratios, elevated Sr/Ba and Ca/Ti ratios, and depleted excess 210Pb and 137Cs activities, indicating older provenance with marine biogenic dominance. Integrated analysis attributes the EM3 increase to resuspension and onshore transport of relict mid-shelf sandy sediments driven by high-energy events (e.g., storm waves). This mechanism of exogenic inputcoupled with drastic reductions in Yangtze-derived sediment, forms a dual driver for coarsening: exogenic sand compensates coarse fractions directly, while diminished fine sediment supply weakens the dilution effects. These combined processes explain recent landward migration, surface coarsening, and sandy layer thickening. Against intensifying extreme climatic events and watershed human activities, ongoing monitoring of the transitional zone’s evolution and environmental impacts is imperative.

  • 加载中
  • [1] DUNN F E,DARBY S E,NICHOLLS R J,et al. Projections of declining fluvial sediment delivery to major deltas worldwide in response to climate change and anthropogenic stress[J]. Environmental Research Letters,2019,14:084034.

    Google Scholar

    [2] DETHIER E N,RENSHAW C E,MAGILLIGAN F J. Rapid changes to global river suspended sediment flux by humans[J]. Science,2022,376(6600):1447-1452.

    Google Scholar

    [3] SYVITSKI J P M,KETTNER A J,OVEREEM I,et al. Sinking deltas due to human activities[J]. Nature Geoscience,2009,2(10):681-686. doi: 10.1038/ngeo629

    CrossRef Google Scholar

    [4] SYVITSKI J P M,SAITO Y. Morphodynamics of deltas under the influence of humans[J]. Global and Planetary Change,2007,57(3/4):261-282.

    Google Scholar

    [5] VOROSMARTY C J,SYVITSKI J,DAY J,et al. Battling to save the world's river deltas[J]. Bulletin of the Atomic Scientists,2009,65(2):31-43. doi: 10.2968/065002005

    CrossRef Google Scholar

    [6] NIENHUIS J H,ASHTON A D,EDMONDS D A,et al. Global-scale human impact on delta morphology has led to net land area gain[J]. Nature,2020,577:514-518.

    Google Scholar

    [7] VOROSMARTY C J,MEYBECK M,FEKETE B,et al. Anthropogenic sediment retention:major global impact from registered river impoundments[J]. Global and Planetary Change,2003,39(1/2):169-190.

    Google Scholar

    [8] GIOSAN L,SYVITSKI J,CONSTANTINESCU S,et al. Climate change:protect the world's deltas[J]. Nature,2014,516(7529):31-33.

    Google Scholar

    [9] WALLING D E. Human impact on land-ocean sediment transfer by the world's rivers[J]. Geomorphology,2006,79(3/4):192-216.

    Google Scholar

    [10] LIU J P,XU K H,LI A C,et al. Flux and fate of Yangtze River sediment delivered to the East China Sea[J]. Geomorphology,2007,85(3/4):208-224.

    Google Scholar

    [11] XU K H,LI A C,LIU J P,et al. Provenance,structure,and formation of the mud wedge along inner continental shelf of the East China Sea:a synthesis of the Yangtze dispersal system[J]. Marine Geology,2012,291:176-191.

    Google Scholar

    [12] FAN D D,WU Y J,ZHANG Y,et al. South Flank of the Yangtze Delta:past,present,and future[J]. Marine Geology,2017,392:78-93.

    Google Scholar

    [13] YANG S L,MILLIMAN J D,LI P,et al. 50,000 dams later:erosion of the Yangtze River and its delta[J]. Global and Planetary Change,2011,75(1/2):14-20.

    Google Scholar

    [14] DAI Z J,MEI X F,FAGHERAZZI S,et al. Decline in suspended sediment concentration delivered by the Changjiang (Yangtze) River into the East China Sea between 1956 and 2013[J]. Geomorphology,2016,268:123-132.

    Google Scholar

    [15] LUAN H L,DING P X,WANG Z B,et al. Decadal morphological evolution of the Yangtze Estuary in response to river input changes and estuarine engineering projects[J]. Geomorphology,2016,265:12-23.

    Google Scholar

    [16] 左书华,杨春松,付桂,等. 长江口入海水沙通量变化及其影响分析[J]. 海洋地质前沿,2022,38(11):56-64.

    Google Scholar

    ZUO S H,YANG C S,FU G,et al. Variation of water and sediment flux and its influence on the Yangtze River Estuary[J]. Marine Geology Frontiers,2022,38(11):56-64.

    Google Scholar

    [17] GUO X J,FAN D D,ZHENG S W,et al. Revisited sediment budget with latest bathymetric data in the highly altered Yangtze (Changjiang) Estuary[J]. Geomorphology,2021,391:107873.

    Google Scholar

    [18] WU Y J,FAN D D,SU J F. Cascading erosion in the tide-dominated Changjiang Delta:a novel radionuclide approach[J]. Geophysical Research Letters,2024,51:e2024GL113057.

    Google Scholar

    [19] 沈华悌,梁居廷,王秀昌. 东海陆架残留沉积物的改造[J]. 海洋地质与第四纪地质,1984,4(2):67-76.

    Google Scholar

    SHEN H T,LIANG J T,WANG X C. Reworking of relict sediments on the continental shelf of the East China Sea[J]. Marine Geology & Quaternary Geology,1984,4(2):67-76.

    Google Scholar

    [20] 沈华悌. 东海陆架残留沉积时代和成因模式[J]. 海洋学报(中文版),1985,7(1):67-77.

    Google Scholar

    SHEN H T. The time and genetic model of the relict sediment on the continental shelf of East China Sea[J]. Acta Oceanologica Sinica,1985,7(1):67-77.

    Google Scholar

    [21] 刘振夏,印萍,BERNE S,等. 第四纪东海的海进层序和海退层序[J]. 科学通报,2001(S1):74-79.

    Google Scholar

    LIU Z X,YIN P,BERNE S. Transgressive and regressive sequences in the East China Sea during the Quaternary[J]. Chinese Science Bulletin,2001(S1):74-79.

    Google Scholar

    [22] LUO X X,YANG S L,WANG R S,et al. New evidence of Yangtze Delta recession after closing of the Three Gorges Dam[J]. Scientific Reports,2017,7:41735. doi: 10.1038/srep41735

    CrossRef Google Scholar

    [23] LUO X X,YANG S L,ZHANG J. The impact of the Three Gorges Dam on the downstream distribution and texture of sediments along the middle and lower Yangtze River (Changjiang) and its estuary,and subsequent sediment dispersal in the East China Sea[J]. Geomorphology,2012,179:126-140.

    Google Scholar

    [24] YANG H F,YANG S L,XU K H,et al. Erosion potential of the Yangtze Delta under sediment starvation and climate change[J]. Scientific Reports,2017,7:10535. doi: 10.1038/s41598-017-10958-y

    CrossRef Google Scholar

    [25] ZHAN Q,LI M T,LIU X Q,et al. Sedimentary transition of the Yangtze subaqueous delta during the past century:inspiration for delta response to future decline of sediment supply[J]. Marine Geology,2020,428:106279.

    Google Scholar

    [26] 韦璐,范代读,吴伊婧,等. 近百年来长江水下三角洲洪水记录与控制机理[J]. 地质通报,2021,40(5):707-720.

    Google Scholar

    WEI L,FAN D D,WU Y J,et al. ,High resolution flood records in the Yangtze subaqueous delta during the past century and control mechanism[J]. Geological Bulletin of China,2021,40(5):707-720.

    Google Scholar

    [27] RICHARD A D J,ROBERT W D. Principle of Tidal Sedimentology[M]//FAN D D. Open-coastal tidal flats. Dordrecht:Springer,2012:187-229.

    Google Scholar

    [28] WU Y J,FAN D D,WANG D L,et al. Increasing hypoxia in the Changjiang Estuary during the last three decades deciphered from sedimentary redox-sensitive elements[J]. Marine Geology,2020,419:106044. doi: 10.1016/j.margeo.2019.106044

    CrossRef Google Scholar

    [29] HU G,LI A C,LIU J,et al. High resolution records of flood deposition in the mud area off the Changjiang River Mouth during the past century[J]. Chinese Journal of Oceanology and Limnology,2014,32(4):909-920. doi: 10.1007/s00343-014-3244-x

    CrossRef Google Scholar

    [30] ZHAO Y F,ZOU X Q,GAO J H,et al. Recent sedimentary record of storms and floods within the estuarine-inner shelf region of the East China Sea[J]. Holocene,2016,27:439-449.

    Google Scholar

    [31] ZHANG K D,LI A C,ZHANG J,et al. Recent sedimentary records in the East China Sea inner shelf and their response to environmental change and human activities[J]. Journal of Oceanology and Limnology,2018,36:1537-1555. doi: 10.1007/s00343-018-7028-6

    CrossRef Google Scholar

    [32] 蔡国富,范代读,尚帅,等. 图解法与矩值法计算的潮汐沉积粒度参数之差异及其原因解析[J]. 海洋地质与第四纪地质,2014,34(1):195-204.

    Google Scholar

    CAI G F,FAN D D,SHANG S,et al. Difference in grain-size parameters of tidal deposits derived from the graphic and its potential causes[J]. Marine Geology & Quaternary Geology,2014,34(1):195-204.

    Google Scholar

    [33] DAI Z J,LIU J T,WEI W,et al. Detection of the Three Gorges Dam influence on the Changjiang (Yangtze River) submerged delta[J]. Scientific Reports,2014,4:6600. doi: 10.1038/srep06600

    CrossRef Google Scholar

    [34] YANG H F,YANG S L,MENG Y,et al. Recent coarsening of sediments on the southern Yangtze subaqueous delta front:a response to river damming[J]. Continental Shelf Research,2018,155:45-51. doi: 10.1016/j.csr.2018.01.012

    CrossRef Google Scholar

    [35] SOLOVEV V,KIREEVA N,OVCHINNIKOVA S,et al. The complexation of metal ions with various organic ligands in water:prediction of stability constants by QSPR ensemble modelling[J]. Journal of Incl Phenom Macrocycl Chem,2015,83:89-101. doi: 10.1007/s10847-015-0543-6

    CrossRef Google Scholar

    [36] WEI G J,LIU Y,LI X H,et al. Climatic impact on Al,K,Sc and Ti in marine sediments:evidence from ODP Site 1144,South China Sea[J]. Geochemical Journal,2003,37(5):593-602. doi: 10.2343/geochemj.37.593

    CrossRef Google Scholar

    [37] 高抒,贾建军,杨阳,等. 陆架海岸台风沉积记录及信息提取[J]. 海洋学报,2019,41(10):141-159.

    Google Scholar

    GAO S,JIA J J,YANG Y,et al. Obtaining typhoon information from sedimentary records in coastal-shelf waters[J]. Acta Oceanologica Sinica,2019,41(10):141-160.

    Google Scholar

    [38] TIAN Y,FAN D J,ZHANG X L,et al. Event deposits of intense typhoons in the muddy wedge of the East China Sea over the past 150 years[J]. Marine Geology,2019,410:109-121. doi: 10.1016/j.margeo.2018.12.010

    CrossRef Google Scholar

    [39] LU J,LI A C,ZHANG J,et al. Sedimentary record off the Yangtze River Estuary and its response to typhoons and human activities over the past 70 years[J]. Regional Studies in Marine Science,2023,65:103074. doi: 10.1016/j.rsma.2023.103074

    CrossRef Google Scholar

    [40] SUN X S,FAN D J,TIAN Y,et al. Normalization of excess 210Pb with grain size in the sediment cores from the Yangtze River Estuary and adjacent areas:implications for sedimentary processes[J]. The Holocene,2017,28(4):545-557.

    Google Scholar

    [41] 肖尚斌,李安春. 东海内陆架泥区沉积物的环境敏感粒度组分[J]. 沉积学报,2005,23(1):122-129.

    Google Scholar

    XIAO S B,LI A C. A study on environmentally sensitive grain size population in inner shelf of the East China Sea[J]. Acta Sedimentologica Sinca,2005,23(1):122-129.

    Google Scholar

    [42] 赵松,常凤鸣,李铁刚,等. 粒度端元法在东海内陆架古环境重建中的应用[J]. 海洋地质与第四纪地质,2017,37(3):187-195.

    Google Scholar

    ZHAO S,CHANG F M,LI T G,et al. The application of grain-size end member algorithm to paleoenvironmental reconstruction on inner shelf of the East China Sea[J] Marine Geology & Quaternary Geology,2017,37(3):187-195.

    Google Scholar

    [43] BOULAY S,COLIN C,TRENTESUAX A. Mineralogy and sedimentology of Pleistocene sediment in the SCS (ODP site 114)[J]. Pleistocene Mineralogy and Sedimentology,2003,184:1-21.

    Google Scholar

    [44] WELTJE G J. End-member modeling of compositional data:numerical-statistical algorithms for solving the explicit mixing problem[J]. Mathematical Geology,1997,29(4):503-549. doi: 10.1007/BF02775085

    CrossRef Google Scholar

    [45] DIETZE E,HARTMANN K,DIEKMANN B,et al. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona,NE Tibetan Plateau,China[J]. Sedimentary Geology,2012,243:169-180.

    Google Scholar

    [46] YU S Y,COLMAN S M,LI L X. BEMMA:a hierarchical Bayesian end-member modeling analysis of sediment grain-size distributions[J]. Mathematical Geosciences,2016,48(6):723-741. doi: 10.1007/s11004-015-9611-0

    CrossRef Google Scholar

    [47] VRIEND M,PRINS M A. Calibration of modelled mixing patterns in loess grain-size distributions:an example from the north-eastern margin of the Tibetan Plateau,China[J]. Sedimentology,2005,52(6):1361-1374. doi: 10.1111/j.1365-3091.2005.00743.x

    CrossRef Google Scholar

    [48] 李帅,杨胜利,梁敏豪,等. 青藏高原东部黄土粒度分布的端元模型研究[J]. 地球与环境,2018,46(4):331-338.

    Google Scholar

    LI S,YANG S L,LIANG M H,et al. The end member model analysis on grain size of loess in the eastern Tibetan Plateau[J]. Earth and Environment,2018,46(4):331-338.

    Google Scholar

    [49] 孙有斌,高抒,李军. 边缘海陆源物质中环境敏感粒度组分的初步分析[J]. 科学通报,2003,48(1):83-86. doi: 10.3321/j.issn:0023-074X.2003.01.021

    CrossRef Google Scholar

    SUN Y B,GAO S,LI J. Preliminary analysis of environmentally sensitive grain-size components in terrigenous materials from marginal seas[J]. Chinese Science Bulletin,2003,48(1):83-86. doi: 10.3321/j.issn:0023-074X.2003.01.021

    CrossRef Google Scholar

    [50] LIN T W,KABOTH-BAHR S,YAMOAH K A,et al. East Asian winter monsoon variation during the last 3 000 years as recorded in a subtropical mountain lake,northeastern Taiwan[J]. Holocene,2021,31(9):1430-1442. doi: 10.1177/09596836211019094

    CrossRef Google Scholar

    [51] LU J,LI A C,DONG J,et al. Impact of Typhoon Talim on surface sediment records on the East China Sea continental shelf[J]. Estuarine,Coastal and Shelf Science,2021,259:107479. doi: 10.1016/j.ecss.2021.107479

    CrossRef Google Scholar

    [52] YANG Y,PIPER D J W,XU M,et al. Northwestern Pacific tropical cyclone activity enhanced by increased Asian dust emissions during the Little Ice Age[J]. Nature Communications,2022,13(1):1712. doi: 10.1038/s41467-022-29386-2

    CrossRef Google Scholar

    [53] 宁泽,徐磊,林学辉,等. 东海东北部陆架表层沉积物碎屑矿物分布及其物源分析[J]. 海洋地质与第四纪地质,2022,42(5):58-69.

    Google Scholar

    NING Z,XU L,LIN X H,et al. Distribution and provenance of detrital minerals in surface sediments of the northeastern East China Sea[J]. Marine Geology & Quaternary Geology,2022,42(5):58-69.

    Google Scholar

    [54] 刘升发,刘焱光,朱爱美,等. 东海内陆架表层沉积物粒度及其净输运模式[J]. 海洋地质与第四纪地质,2009,29(1):1-6.

    Google Scholar

    LIU S F,LIU Y G,ZHU A M,et al. Grain size trends and net transport patterns of surface sediments in the East China Sea inner continental shelf[J]. Marine Geology & Quaternary Geology,2009,29(1):1-6.

    Google Scholar

    [55] FAN D D,SHANG S,CAI G F,et al. Distinction and grain-size characteristics of intertidal heterolithic deposits in the middle Qiantang Estuary[J]. Geo-Marine Letters,2014,35:161-174.

    Google Scholar

    [56] MEYERS P A. Organic geochemical proxies of paleoceanographic,paleolimnologic,and paleoclimatic processes[J]. Organic Geochemistry,1997,27(5/6):213-250.

    Google Scholar

    [57] LAMB A L,WILSONi G P,LENG M J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material[J]. Earth-Science Reviews,2006,75(1/4):29-57.

    Google Scholar

    [58] XIAN H B,DONG X H,LI Y,et al. High-resolution reconstruction of typhoon events since ∼1850 CE based on multi-proxy sediment records in a coastal lagoon,South China[J]. Science of the Total Environment,2022,803:150063. doi: 10.1016/j.scitotenv.2021.150063

    CrossRef Google Scholar

    [59] 卢健,姜静波,李安春,等. 东海内陆架夏季台风与冬季寒潮沉积动力过程的差异:基于现场观测的认识[J]. 海洋地质与第四纪地质,2023,43(5):96-105.

    Google Scholar

    LU J,JIANG J B,LI A C,et al. Differences in sedimentary dynamic processes between summer typhoons and winter cold waves on the inner shelf of the East China Sea:insights from in-situ observations[J]. Marine Geology & Quaternary Geology,2023,43(5):96-105.

    Google Scholar

    [60] 丛帅,吴晓,齐富康,等. 台风期间东海内陆架跨陆架沉积物输运及其调控机制[J]. 海洋地质与第四纪地质,2024,44(5):38-49.

    Google Scholar

    CONG S,WU X,QI F K,et al. Cross-shelf sediment transport and its regulatory mechanisms on the inner shelf of the East China Sea during typhoon events[J]. Marine Geology & Quaternary Geology,2024,44(5):38-49.

    Google Scholar

    [61] LI W J,WANG Z Y,LEE G H,et al. Ecological and sediment dynamics response to typhoons passing from the east and west sides of the Changjiang (Yangtze River) Estuary and its adjacent sea area[J]. Marine Geology,2024,467:107188. doi: 10.1016/j.margeo.2023.107188

    CrossRef Google Scholar

    [62] XU J S,WANG N,LI G X,et al. The dynamic responses of flow and near-bed turbidity to typhoons on the continental shelf of the East China Sea:field observations[J]. Geological Journal,2016,51:12-21. doi: 10.1002/gj.2804

    CrossRef Google Scholar

    [63] KNUTSON T R,SIRUTIS J J,ZHAO M,et al. Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios[J]. Journal of Climate,2015,28(18):7203-7224. doi: 10.1175/JCLI-D-15-0129.1

    CrossRef Google Scholar

    [64] MEI W,XIE S P. Intensification of landfalling typhoons over the northwest Pacific since the late 1970s[J]. Nature Geoscience,2016,9(10):753-757. doi: 10.1038/ngeo2792

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(67) PDF downloads(11) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint