2025 Vol. 41, No. 3
Article Contents

YUAN Yong, CHEN Jianwen, LUO Di, LI Qing, LIANG Jie, LAN Tianyu, WANG Jianqiang, CAO Ke, ZHAO Hualin. Geological conditions and prospects for CO2 storage in the Cenozoic strata of the Yantai Depression, South Yellow Sea Basin[J]. Marine Geology Frontiers, 2025, 41(3): 35-47. doi: 10.16028/j.1009-2722.2024.245
Citation: YUAN Yong, CHEN Jianwen, LUO Di, LI Qing, LIANG Jie, LAN Tianyu, WANG Jianqiang, CAO Ke, ZHAO Hualin. Geological conditions and prospects for CO2 storage in the Cenozoic strata of the Yantai Depression, South Yellow Sea Basin[J]. Marine Geology Frontiers, 2025, 41(3): 35-47. doi: 10.16028/j.1009-2722.2024.245

Geological conditions and prospects for CO2 storage in the Cenozoic strata of the Yantai Depression, South Yellow Sea Basin

More Information
  • Offshore saline aquifer CO2 storage is an effective approach for reducing carbon emissions and offers technical support for the sustainable development of coastal regions within the framework of carbon neutrality. The Yantai Depression in the South Yellow Sea Basin aligns well with the distribution of coastal carbon sources, making it a promising area for potential CO2 storage. This study analyzes the geological conditions for CO2 storage in the Yantai Depression of the basin. A stratigraphic volume model was established, and constraint calculations were applied to predict the storage potential of the Cenozoic saline aquifers, followed by an evaluation of CO2 storage prospects in the region. The results show that the Yantai Depression, which comprises a series of NE-trending graben and half-graben depressions, contains four carbon storage-caprock assemblages in the Cenozoic. The region exhibits strong crustal stability, a low geothermal gradient, and low heat flow, characteristic of a "cold basin." These factors contribute to favorable geological conditions for CO2 storage. The storage potential of CO2 in the 800~3 200 m deep saline aquifers of the Yantai Depression averages 99 Gt, indicating a substan tial storage capacity. Structurally, the Cenozoic strata of the Yantai Depression is defined by five types of traps: thrust anticlines, gravity-sliding anticlines, compressive anticlines, faulted anticlines, and fault blocks. Four favorable storage zones have been identified, highlighting the strong geological potential for CO2 sequestration. These findings provide a scientific basis for future site selection studies for offshore CO2 geological storage.

  • 加载中
  • [1] International Energy Agency. Exploring clean energy pathways:the role of CO2 storage[R]. Paris: International Energy Agency,2019.

    Google Scholar

    [2] International Energy Agency. Net zero by 2050:a roadmap for the global energy sector[R]. Paris:International Energy Agency,2021.

    Google Scholar

    [3] 蔡博峰,李琦,张贤,等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021):中国CCUS路径研究[R]. 北京:生态环境部环境规划院,中国科学院武汉岩土力学研究所, 中国21世纪议程管理中心,2021.

    Google Scholar

    CAI B F,LI Q,ZHANG X, et al. Annual Report on Carbon Dioxide Capture,Utilization and Storage (CCUS) in China (2021) : China CCUS Pathways Study[R].Beijing:Chinese Academy of Environmental Planning, Institute of Rock and Soil Mechanics, the Administrative Center for China's Agenda 21, 2021.

    Google Scholar

    [4] 张贤,杨晓亮,鲁玺,等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2023)[R]. 北京:中国21世纪议程管理中心,全球碳捕集与封存研究院,清华大学,2023.

    Google Scholar

    ZHANG X,YANG X L,LU X, et al. Annual Report on Carbon Dioxide Capture,Utilization and Storage (CCUS) in China (2023)[R]. Beijing:The Administrative Center for China's Agenda 21,The Global CCS Institute,Tsinghua University,2023.

    Google Scholar

    [5] SCHRAG D P. Storage of carbon dioxide in offshore sedi-ments[J]. Science,2009,325(5948):1658-1659. doi: 10.1126/science.1175750

    CrossRef Google Scholar

    [6] 米立军. 全球海上CO2封存现状及中国近海机遇与挑战[J]. 中国海上油气,2023,35(1):123-135.

    Google Scholar

    MI L J. Current status of global CO2 ocean sequestration and opportunities and challenges in China offshore areas[J]. China Offshore Oil and Gas,2023,35(1):123-135.

    Google Scholar

    [7] 周守为,李清平,朱军龙,等. CO2海洋封存的思考与新路径探索[J]. 天然气工业,2024,44(4):1-10,199. doi: 10.3787/j.issn.1000-0976.2024.04.001

    CrossRef Google Scholar

    ZHOU S W,LI Q P,ZHU J L, et al. Consideration on CO2 marine storage and exploration of new paths[J]. Natural Gas Industry,2024,44(4):1-10,199. doi: 10.3787/j.issn.1000-0976.2024.04.001

    CrossRef Google Scholar

    [8] 陈建文,王嘹亮,王平康,等. 中国海域沉积盆地咸水层二氧化碳地质封存潜力[J]. 海洋地质与第四纪地质,2024,44(3):98-114.

    Google Scholar

    CHEN J W,WANG L L,WANG P K, et al. Carbon dioxide geological storage potential in saline aquifer of sedimentary basins in China Sea[J]. Marine Geology & Quaternary Geology,2024,44(3):98-114.

    Google Scholar

    [9] 曹默雷,陈建平. CO2深部咸水层封存选址的地质评价[J]. 地质学报,2022,96(5):1868-1882. doi: 10.3969/j.issn.0001-5717.2022.05.022

    CrossRef Google Scholar

    CAO M L,CHEN J P. The site selection geological evaluation of the CO2 storage of the deep saline aquifer[J]. Acta Geologica Sinica,2022,96(5):1868-1882. doi: 10.3969/j.issn.0001-5717.2022.05.022

    CrossRef Google Scholar

    [10] SAWADA Y,TANAKA J,SUZUKI C, et al. Tomakomai CCS demonstration project of Japan,CO2 injection in progress[J]. Energy Procedia,2018,154:3-8. doi: 10.1016/j.egypro.2018.11.002

    CrossRef Google Scholar

    [11] AKAI T,KURIYAMA T,KATO S, et al. Numerical modelling of long-term CO2 storage mechanisms in saline aquifers using the Sleipner benchmark dataset[J]. International Journal of Greenhouse Gas Control,2021,110:103405. doi: 10.1016/j.ijggc.2021.103405

    CrossRef Google Scholar

    [12] Global CCS Institute. Global Status of CCS Report 2020[R]. Global CCS Institute,2020.

    Google Scholar

    [13] XIE H P,LI X C,FANG Z F, et al. Carbon geological utilization and storage in China:current status and perspectives[J]. Acta Geotechnica,2014,9(1):7-27. doi: 10.1007/s11440-013-0277-9

    CrossRef Google Scholar

    [14] United States Department of Energy. Carbon sequestration atlas of the United States and Canada (Third edition)[R]. Washington, DC: United States Department of Energy,2010.

    Google Scholar

    [15] United States Department of Energy. Carbon storage atlas(Fifth edition)[R]. Washington, DC: United States Department of Energy,2015.

    Google Scholar

    [16] GOODMAN A,HAKALA A,BROMHAL G, et al. U. S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale[J]. International Journal of Greenhouse Gas Control,2011,5(4):952-965. doi: 10.1016/j.ijggc.2011.03.010

    CrossRef Google Scholar

    [17] BRENNAN S T,BURRUSS R C,MERRILL M D, et al. A probabilistic assessment methodology for the evaluation of geologic carbon dioxide storage[J]. US Geological Survey open-file report, 2010, 1127(2010): 31.

    Google Scholar

    [18] United States Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team. USGS ircular 1386:national assessment of geologic carbon dioxide storage resources-results (ver. 1.13)[R].United States Geological Survey, 2013.

    Google Scholar

    [19] 郭建强,文冬光,张森琦,等. 中国二氧化碳地质储存潜力评价与示范工程[J]. 中国地质调查,2015,2(4):36-46.

    Google Scholar

    GUO J Q,WEN D G,ZHANG S Q, et al. Potential evaluation and demonstration project of CO2 geological storage in China[J]. Geological Survey of China,2015,2(4):36-46.

    Google Scholar

    [20] BACHU S,BONIJOLY D,BRADSHAW J, et al. Estimation of CO2 storage capacity in geological gedia - Phase 2[R]. Washington, DC: Carbon Sequestration Leadership Forum,2007.

    Google Scholar

    [21] BACHU S,BONIJOLY D,BRADSHAW J,et al. CO2 storage capacity estimation:methodology and gaps[J]. International Journal of Greenhouse Gas Control,2007,1(4):430-443. doi: 10.1016/S1750-5836(07)00086-2

    CrossRef Google Scholar

    [22] ZHOU Q,BIRKHOLZER J T,TSANG C F, et al. A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations[J]. International Journal of Greenhouse Gas Control,2008,2(4):626-639. doi: 10.1016/j.ijggc.2008.02.004

    CrossRef Google Scholar

    [23] 沈平平,廖新维,刘庆杰. 二氧化碳在油藏中埋存量计算方法[J]. 石油勘探与开发,2009,36(2):216-220. doi: 10.3321/j.issn:1000-0747.2009.02.012

    CrossRef Google Scholar

    SHEN P P,LIAO X W,LIU Q J. Methodology for estimation of CO2 storage capacity in reservoirs[J]. Petroleum Exploration and Development,2009,36(2):216-220. doi: 10.3321/j.issn:1000-0747.2009.02.012

    CrossRef Google Scholar

    [24] SZULCZEWSKI M L,MACMINN C W,HERZOG H J, et al. Lifetime of carbon capture and storage as a climate-change mitigation technology[J]. Proceedings of the National Academy of Sciences,2012,109(14):5185-5189. doi: 10.1073/pnas.1115347109

    CrossRef Google Scholar

    [25] 李阳,王锐,赵清民,等. 含油气盆地咸水层二氧化碳封存潜力评价方法[J]. 石油勘探与开发,2023,50(2):424-430. doi: 10.11698/PED.20220851

    CrossRef Google Scholar

    LI Y,WANG R,ZHAO Q M, et al. A CO2 storage potential evaluation method for saline aquifers in a petroliferous basin[J]. Petroleum Exploration and Development,2023,50(2):424-430. doi: 10.11698/PED.20220851

    CrossRef Google Scholar

    [26] SHAN Y L,HUANG Q,GUAN D, et al. China CO2 emission accounts 2016-2017[J]. Scientific Data,2020,7(1):54. doi: 10.1038/s41597-020-0393-y

    CrossRef Google Scholar

    [27] GUAN Y R,SHAN Y L,HUANG Q, et al. Assessment to China's recent emission pattern shifts[J]. Earth's Future,2021,9(11):e2021EF002241.

    Google Scholar

    [28] SHAN Y L,LIU J H,LIU Z, et al. An emissions-socioeconomic inventory of Chinese cities[J]. Scientific Data,2019,6(1):190027. doi: 10.1038/sdata.2019.27

    CrossRef Google Scholar

    [29] SHAN Y L,GUAN Y R,HANG Y, et al. City-level emission peak and drivers in China[J]. Science Bulletin,2022,67(18):1910-1920. doi: 10.1016/j.scib.2022.08.024

    CrossRef Google Scholar

    [30] 霍传林. 我国近海二氧化碳海底封存潜力评估和封存区域研究[D]. 大连:大连海事大学,2014.

    Google Scholar

    HUO C L. Study on the potential evaluation and the storage areas of the carbon dioxide seabed storage in offshore China[D]. Dalian:Dalian Maritime University,2014.

    Google Scholar

    [31] 陈建文,梁杰,张银国,等. 中国海域油气资源潜力分析与黄东海海域油气资源调查进展[J]. 海洋地质与第四纪地质,2019,39(6):1-29.

    Google Scholar

    CHEN J W,LIANG J,ZHANG Y G, et al. Regional evaluation of oil and gas resources in offshore China and exploration of marine Paleo-Mesozoic oil and gas in the Yellow Sea and East China Sea[J]. Marine Geology & Quaternary Geology,2019,39(6):1-29.

    Google Scholar

    [32] 高战武,缑亚森,钟慧,等. 中国东部海域断裂构造格架与地震活动研究[J]. 震灾防御技术,2021,16(1):11-18. doi: 10.11899/zzfy20210102

    CrossRef Google Scholar

    GAO Z W,GOU Y S,ZHONG H, et al. Fault structure frame and seismicity in the sea on the eastside of Chinese mainland[J]. Technology for Earthquake Disaster Prevention,2021,16(1):11-18. doi: 10.11899/zzfy20210102

    CrossRef Google Scholar

    [33] 陈建文,杨长清,张莉,等. 中国海域前新生代地层分布及其油气勘查方向[J]. 海洋地质与第四纪地质,2022,42(1):1-25.

    Google Scholar

    CHEN J W,YANG C W,ZHANG L, et al. Distribution of Pre-Cenozoic strata and petroleum prospecting directions in China seas[J]. Marine Geology & Quaternary Geology,2022,42(1):1-25.

    Google Scholar

    [34] YUAN Y,CHEN J W,ZHANG Y G, et al. Sedimentary system characteristics and depositional filling model of Upper Permian–Lower Triassic in South Yellow Sea Basin[J]. Journal of Central South University,2018,25(12):2910-2928. doi: 10.1007/s11771-018-3962-x

    CrossRef Google Scholar

    [35] 陈建文,张异彪,陈华,等. 南黄海盆地海相中—古生界地震探测技术攻关历程及效果[J]. 海洋地质前沿,2021,37(4):1-17.

    Google Scholar

    CHEN J W,ZHANG Y B,CHEN H, et al. Research experiences and application of seismic exploration technology to the Mesozoic-Paleozoic marine strata in the South Yellow Sea Basin[J]. Marine Geology Frontiers,2021,37(4):1-17.

    Google Scholar

    [36] YUAN Y,CHEN J W,ZHANG Y X, et al. Tectonic evolution and geological characteristics of hydrocarbon reservoirs in marine Mesozoic–Paleozoic strata in the South Yellow Sea Basin[J]. Journal of Ocean University of China,2018,17(5):1075-1090. doi: 10.1007/s11802-018-3583-x

    CrossRef Google Scholar

    [37] YUAN Y,CHEN J W,LIANG J, et al. Hydrocarbon geological conditions and exploration potential of Mesozoic-Paleozoic marine strata in the South Yellow Sea Basin[J]. Journal of Ocean University of China,2019,18(6):1329-1343. doi: 10.1007/s11802-019-3853-2

    CrossRef Google Scholar

    [38] 雷宝华,陈建文,梁杰,等. 印支运动以来南黄海盆地的构造变形与演化[J]. 海洋地质与第四纪地质,2018,38(3):45-54.

    Google Scholar

    LEI B H,CHEN J W,LIANG J, et al. Tectonic deformation and evolution of the South Yellow Sea Basin since Indosinian movement[J]. Marine Geology & Quaternary Geology,2018,38(3):45-54.

    Google Scholar

    [39] 张银国,陈建文,龚建明,等. 青岛海洋地质研究所45年来海域油气资源调查进展[J]. 海洋地质与第四纪地质,2024,44(3):1-22.

    Google Scholar

    ZHANG Y G,CHEN J W,GONG J M, et al. Progress in marine oil and gas survey in Qingdao Institute of Marine Geology over the past 45 years[J]. Marine Geology & Quaternary Geology,2024,44(3):1-22.

    Google Scholar

    [40] 朱伟林,陈春峰,张伯成,等. 南黄海古生代盆地原型演变与烃源岩发育特征[J]. 石油实验地质,2020,42(5):728-741. doi: 10.11781/sysydz202005728

    CrossRef Google Scholar

    ZHU W L,CHEN C F,ZHANG B C, et al. Paleozoic basin prototype evolution and source rock development in the South Yellow Sea[J]. Petroleum Geology & Experiment,2020,42(5):728-741. doi: 10.11781/sysydz202005728

    CrossRef Google Scholar

    [41] 雷宝华,张银国,王明健,等. 南黄海盆地崂山隆起构造特征与油气勘探方向[J]. 海洋地质与第四纪地质,2022,42(2):131-143.

    Google Scholar

    LEI B H,ZHANG Y G,WANG M J, et al. Structural characteristics and hydrocarbon exploration prospect of the Laoshan Uplift in the South Yellow Sea Basin[J]. Marine Geology & Quaternary Geology,2022,42(2):131-143.

    Google Scholar

    [42] 吴飘,陈建文,赵青芳,等. 南黄海盆地二叠系高-过成熟烃源岩的生物标志化合物特征及其地质意义[J]. 海洋地质与第四纪地质,2023,43(4):150-166.

    Google Scholar

    WU P,CHEN J W,ZHAO Q F, et al. Characteristics of biomarkers and the geological significance in highly to over-mature Permian source rocks in the South Yellow Sea Basin[J]. Marine Geology & Quaternary Geology,2023,43(4):150-166.

    Google Scholar

    [43] 梁杰,张鹏辉,陈建文,等. 南黄海盆地中—古生代海相地层油气保存条件[J]. 天然气工业,2017,37(5):10-19. doi: 10.3787/j.issn.1000-0976.2017.05.002

    CrossRef Google Scholar

    LIANG J,ZHANG P H,CHEN J W, et al. Hydrocarbon preservation conditions in Mesozoic-Paleozoic marine strata in the South Yellow Sea Basin[J]. Natural Gas Industry,2017,37(5):10-19. doi: 10.3787/j.issn.1000-0976.2017.05.002

    CrossRef Google Scholar

    [44] 陈建文,许明,雷宝华,等. 华北—扬子板块碰撞结构的识别:来自南黄海海域的证据[J]. 海洋地质与第四纪地质,2020,40(3):1-12.

    Google Scholar

    CHEN J W,XU M,LEI B H, et al. Collision of North China and Yangtze Plates:evidence from the South Yellow Sea[J]. Marine Geology & Quaternary Geology,2020,40(3):1-12.

    Google Scholar

    [45] FU Y L,YAN B,LIANG J, et al. Influence of basement high and detachment on the kinematics of a fold-and-thrust belt in the central South Yellow Sea Basin,China:insights from analog modeling[J]. Marine and Petroleum Geology,2024,160:106648. doi: 10.1016/j.marpetgeo.2023.106648

    CrossRef Google Scholar

    [46] 许明,陈建文,雷宝华,等. 南黄海海域中生代前陆盆地形成的构造背景[J]. 现代地质,2019,33(1):13-24.

    Google Scholar

    XU M,CHEN J W,LEI B H, et al. Tectonic background of Mesozoic foreland basin development in the South Yellow Sea[J]. Geoscience,2019,33(1):13-24.

    Google Scholar

    [47] 张玉玺,陈建文,张银国. 下扬子—南黄海地区下三叠统“错时相”沉积及成因[J]. 海洋地质前沿,2021,37(4):68-76.

    Google Scholar

    ZHANG Y X,CHEN J W,ZHANG Y G. Anachronistic facies and its origin of the Lower Triassic in the Lower Yangtze-South Yellow Sea area[J]. Marine Geology Frontiers,2021,37(4):68-76.

    Google Scholar

    [48] 米立军,吴克强,刘志峰,等. 从扬子地区海相烃源岩分布规律看南黄海盆地中—古生界有利勘探领域[J]. 中国海上油气,2022,34(2):1-13. doi: 10.11935/j.issn.1673-1506.2022.02.001

    CrossRef Google Scholar

    MI L J,WU K Q,LIU Z F, et al. Favorable exploration field analysis of Mesozoic-Paleozoic in South Yellow Sea Basin from the distribution characteristics of marine source rocks in the Yangtze region[J]. China Offshore Oil and Gas,2022,34(2):1-13. doi: 10.11935/j.issn.1673-1506.2022.02.001

    CrossRef Google Scholar

    [49] 徐旭辉,周小进,彭金宁. 从扬子地区海相盆地演化改造与成藏浅析南黄海勘探方向[J]. 石油实验地质,2014,36(5):523-531. doi: 10.11781/sysydz201405523

    CrossRef Google Scholar

    XU X H,ZHOU X J,PENG J N. Exploration targets in south Yellow Sea through analysis of tectono-depositional evolution and hydrocarbon accumulation of marine basin in Yangtze area[J]. Petroleum Geology & Experiment,2014,36(5):523-531. doi: 10.11781/sysydz201405523

    CrossRef Google Scholar

    [50] 朱伟林,米立军. 中国海域含油气盆地图集[M]. 北京:石油工业出版社,2010.

    Google Scholar

    ZHU W L,MI L J. Atlas of Oil and Gas Basins,China Sea[M]. Beijing:Petroleum Industry Press,2010.

    Google Scholar

    [51] 庞玉茂,张训华,肖国林,等. 下扬子南黄海沉积盆地构造地质特征[J]. 地质论评,2016,62(3):604-616.

    Google Scholar

    PANG Y M,ZHANG X H,XIAO G L, et al. Structural and geological characteristics of the South Yellow Sea Basin in Lower Yangtze Block[J]. Geological Review,2016,62(3):604-616.

    Google Scholar

    [52] 陈建文,袁勇,施剑,等. 中国海域深部“高富强”地震探测技术与南黄海盆地海相地层的发现[J]. 天然气勘探与开发,2019,42(3):46-57.

    Google Scholar

    CHEN J W,YUAN Y,SHI J, et al. “High,rich,and strong” seismic technologies for deeper layers in offshore China and discoveries in marine strata of South Yellow Sea Basin[J]. Natural Gas Exploration and Development,2019,42(3):46-57.

    Google Scholar

    [53] 吴飘,陈建文,张银国,等. 南黄海地区二叠系孤峰组硅质烃源岩的地球化学特征及上升流成因[J]. 海洋地质与第四纪地质,2023,43(1):138-158.

    Google Scholar

    WU P,CHEN J W,ZHANG Y G, et al. Geochemical characteristics and upwelling origin of siliceous source rocks in the Permian Gufeng Formation of the South Yellow Sea area[J]. Marine Geology & Quaternary Geology,2023,43(1):138-158.

    Google Scholar

    [54] YUAN Y,WANG J Q,CHEN J W, et al. Carbon dioxide storage potential of Cenozoic saline aquifers in the South Yellow Sea Basin[J]. Energies,2023,16(4):1578. doi: 10.3390/en16041578

    CrossRef Google Scholar

    [55] ZHANG H R,YUAN Y,CHEN J W, et al. Pore structure characteristics and reservoir classification of tight sandstones within the Upper Permian Longtan Formation in the Laoshan Uplift,South Yellow Sea Basin:implications for hydrocarbon exploration[J]. Journal of Marine Science and Engineering,2024,12(5):732. doi: 10.3390/jmse12050732

    CrossRef Google Scholar

    [56] 曲希玉. 南黄海盆地北部中、新生界沉积特征及油气远景[D]. 长春:吉林大学,2004.

    Google Scholar

    QU X Y. Sedimentary Characteristics and Oil and gas prospect for the Mesozoic and Cenozoic in northern South Yellow Sea Basin[D]. Changchun:Jilin University,2004.

    Google Scholar

    [57] 袁勇,陈建文,梁杰,等. 南黄海崂山隆起二叠系砂岩储层特征及其油气勘探前景[J]. 海洋地质与第四纪地质,2021,41(5):181-193.

    Google Scholar

    YUAN Y,CHEN J W,LIANG J, et al. Characteristics and hydrocarbon prospects of the Permian sandstone reservoirs of the Laoshan Uplift,South Yellow Sea[J]. Marine Geology & Quaternary Geology,2021,41(5):181-193.

    Google Scholar

    [58] 吴淑玉,刘俊,陈建文,等. 南黄海崂山隆起石炭系—下二叠统孔隙型碳酸盐岩储层预测[J]. 海洋地质与第四纪地质,2020,40(5):136-148.

    Google Scholar

    WU S Y,LIU J,CHEN J W, et al. Prediction of pore-dominated Carboniferous-Lower Permian carbonate reservoir at the Laoshan Uplift,South Yellow Sea Basin[J]. Marine Geology & Quaternary Geology,2020,40(5):136-148.

    Google Scholar

    [59] 张银国,肖国林,吴志强,等. 南黄海盆地北部坳陷古近系沉积特征及其沉积演化[J]. 海洋地质前沿,2014,30(10):26-33.

    Google Scholar

    ZHANG Y G,XIAO G L,WU Z Q, et al. Sedimentary characteristics and evolution of the Paleogene in the Northern Depression of the South Yellow Sea Basin[J]. Marine Geology Frontiers,2014,30(10):26-33.

    Google Scholar

    [60] 蔡佳,赵志刚,张喜林,等. 南黄海盆地北部坳陷北凹阜宁组沉积相研究[J]. 地质学刊,2014,38(4):530-535. doi: 10.3969/j.issn.1674-3636.2014.04.530

    CrossRef Google Scholar

    CAI J,ZHAO Z G,ZHANG X L, et al. On sedimentary facies in Funing Formation of Northern Sag in North Depression in South Yellow Sea Basin[J]. Journal of Geology,2014,38(4):530-535. doi: 10.3969/j.issn.1674-3636.2014.04.530

    CrossRef Google Scholar

    [61] 蔡佳,崔敏,刘志峰,等. 南黄海盆地南五凹古近系戴南组沉积相及储盖组合分析[J]. 东华理工大学学报(自然科学版),2014,37(4):395-402.

    Google Scholar

    CAI J,CUI M,LIU Z F, et al. Sedimentary facies and analyze on reservoir-seal assemblage of the Dainan Formation of Paleogene in Nan 5 Sag,South Yellow Sea Basin[J]. Journal of East China Institute of Technology (Natural Science),2014,37(4):395-402.

    Google Scholar

    [62] 蔡佳,吴克强,王鹏,等. 南黄海盆地南部坳陷古近系阜宁组沉积相分析[J]. 地质学刊,2016,40(1):125-134. doi: 10.3969/j.issn.1674-3636.2016.01.125

    CrossRef Google Scholar

    CAI J,WU K Q,WANG P, et al. Sedimentary facies of the Paleogene Funing Formation in the South Depression of the South Yellow Sea Basin[J]. Journal of Geology,2016,40(1):125-134. doi: 10.3969/j.issn.1674-3636.2016.01.125

    CrossRef Google Scholar

    [63] 王振鸿,胡明毅,汤济广,等. 南黄海盆地南部坳陷晚白垩世—第四纪构造演化对油气的控制[J]. 化工矿产地质,2014,36(3):129-138. doi: 10.3969/j.issn.1006-5296.2014.03.001

    CrossRef Google Scholar

    WANG Z H,HU M Y,YANG J G, et al. Control on petroleum by tectonic evolution of the Late Cretaceous-Quaternary in the South Depression of the South Yellow Sea Basin[J]. Geology of Chemical Minerals,2014,36(3):129-138. doi: 10.3969/j.issn.1006-5296.2014.03.001

    CrossRef Google Scholar

    [64] 庞玉茂,张训华,郭兴伟,等. 南黄海北部盆地中、新生代构造热演化史模拟研究[J]. 地球物理学报,2017,60(8):3177-3190. doi: 10.6038/cjg20170824

    CrossRef Google Scholar

    PANG Y M,ZHANG X H,GUO X W, et al. Mesozoic and Cenozoic tectono-thermal evolution modeling in the northern South Yellow Sea Basin[J]. Chinese Journal of Geophysics,2017,60(8):3177-3190. doi: 10.6038/cjg20170824

    CrossRef Google Scholar

    [65] 熊忠,江志强,孙鹏,等. 南黄海盆地北部坳陷北凹断裂特征与构造演化[J]. 海洋地质与第四纪地质,2018,38(3):75-84.

    Google Scholar

    XIONG Z,JIANG Z Q,SUN P, et al. Characteristics and tectonic evolution of the fault system in the north sag of Northern Depression of South Yellow Sea Basin[J]. Marine Geology & Quaternary Geology,2018,38(3):75-84.

    Google Scholar

    [66] 李楠. 南黄海盆地北部坳陷构造演化及沉积相研究[D]. 青岛:中国海洋大学,2010.

    Google Scholar

    LI N. Research on structural evolution and sedimentary facies in north depression of the South Yellow Sea Basin[D]. Qingdao:Ocean University of China,2010.

    Google Scholar

    [67] BACHU S. Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change[J]. Environmental Geology,2003,44(3):277-289. doi: 10.1007/s00254-003-0762-9

    CrossRef Google Scholar

    [68] 皮仲. 6.0 ka以来黄海暖流和黄海冷水团的演化[D]. 青岛:中国科学院大学(中国科学院海洋研究所),2023.

    Google Scholar

    PI Z. Evolution of the Yellow Sea warm current and the Yellow Sea cold water mass since 6.0 ka[D]. Qingdao:University of Chinese Academy of Sciences (Institute of Oceanology Chinese Academy of Sciences),2023.

    Google Scholar

    [69] 孙旭东. 南黄海大地热流、地层生热率与热结构分析[D]. 北京:中国地质大学(北京),2020.

    Google Scholar

    SUN X D. Analysis of heat flow,heat generation rate and thermal structure in the South Yellow Sea[D]. Beijing:China University of Geosciences (Beijing) ,2020.

    Google Scholar

    [70] 姜光政,高堋,饶松,等. 中国大陆地区大地热流数据汇编(第四版)[J]. 地球物理学报,2016,59(8):2892-2910.

    Google Scholar

    JIANG G Z,GAO P,RAO S, et al. Compilation of heat flow data in the continental area of China (4th edition) [J]. Chinese Journal of Geophysics,2016,59(8):2892-2910.

    Google Scholar

    [71] 徐曦,胡瀚文,张加洪,等. 中国东部新生代沉积盆地热状态与油气成藏潜力:以苏北—南黄海盆地为例[J]. 石油实验地质,2020,42(6):928-937. doi: 10.11781/sysydz202006928

    CrossRef Google Scholar

    XU X,HU H W,ZHANG J H, et al. Deep thermal state and hydrocarbon accumulation potential of Cenozoic sedimentary basins in East China:a case study of Subei-South Yellow Sea Basin[J]. Petroleum Geology & Experiment,2020,42(6):928-937. doi: 10.11781/sysydz202006928

    CrossRef Google Scholar

    [72] 武守诚. 中国油气盆地的系统研究[J]. 石油学报,1993,(4):20-34. doi: 10.7623/syxb199303003

    CrossRef Google Scholar

    WU S C. A systematic study of the Chinese petroliferous basins[J]. Acta Petrolei Sinica,1993,(4):20-34. doi: 10.7623/syxb199303003

    CrossRef Google Scholar

    [73] 高顺莉,徐曦,周祖翼. 南黄海北部盆地晚白垩世以来构造变形与盆地成因[J]. 石油与天然气地质,2015,36(6):924-933. doi: 10.11743/ogg20150607

    CrossRef Google Scholar

    GAO S L,XU X,ZHOU Z Y. Structural deformation and genesis of the northern sub-basin in South Yellow Sea since Late Cretaceous[J]. Oil & Gas Geology,2015,36(6):924-933. doi: 10.11743/ogg20150607

    CrossRef Google Scholar

    [74] 李旭东,刘绍文,王丽. 江苏—南黄海地区地震活动时空分布特征及其孕震构造分析[J]. 高校地质学报,2018,24(4):551-562.

    Google Scholar

    LI X D,LIU S W,WANG L. Spatiotemporal pattern of earthquake activities and seismotectonics in Jiangsu and adjacent Southern Yellow Sea Area[J]. Geological Journal of China Universities,2018,24(4):551-562.

    Google Scholar

    [75] United States Geological Survey. Earthquake Hazards Program[EB/OL]. [2024-09-29]. https://www.usgs.gov/programs/earthquake-hazards.

    Google Scholar

    [76] 施振飞,张振城,叶绍东,等. 苏北盆地高邮凹陷阜宁组储层次生孔隙成因机制探讨[J]. 沉积学报,2005,23(3):429-436. doi: 10.3969/j.issn.1000-0550.2005.03.008

    CrossRef Google Scholar

    SHI Z F,ZHANG Z C,YE S D, et al. The mechanism of secondary pores in the reservoir of Funing Formation in Gaoyou Depression of Subei Basin[J]. Acta Sedimentologica Sinica,2005,23(3):429-436. doi: 10.3969/j.issn.1000-0550.2005.03.008

    CrossRef Google Scholar

    [77] 王林. 苏北盆地金湖凹陷阜宁组阜一、阜二段储层孔隙结构特征研究[D]. 武汉:长江大学,2018.

    Google Scholar

    WANG L. Study on the pore structure characteristics of the reservoirs of the Fu 1 Member and the Fu 2 Member of Funing Formation in the Jinhu Depression,Subei Basin[D]. Wuhan:Yangtze University,2018.

    Google Scholar

    [78] EMAMI-MEYBODI H,HASSANZADEH H,GREEN C P, et al. Convective dissolution of CO2 in saline aquifers:progress in modeling and experiments[J]. International Journal of Greenhouse Gas Control,2015,40:238-266. doi: 10.1016/j.ijggc.2015.04.003

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(69) PDF downloads(11) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint