Citation: | LI Meina, TIAN Yuqing, YIN Ping, DUAN Xiaoyong, ZHANG Jialin, LI Xue, ZHANG Yao. Remote sensing monitoring and analysis based on multi-sourced data of mangroves in Pearl Bay, Guangxi[J]. Marine Geology Frontiers, 2025, 41(4): 82-92. doi: 10.16028/j.1009-2722.2024.244 |
To understand the spatiotemporal evolution of mangroves in Pearl Bay, Guangxi over the past 30 years, we used Landsat TM/OLI satellite remote sensing images as the data source and combined them with Sentinel-2 satellite remote sensing images. Based on the spectral characteristics of the ground objects, we constructed a decision tree classification rule. Through the decision tree classification method based on tasseled cap transformation, we extracted the spatial distribution information of mangroves in 1995, 2000, 2005, 2010, 2015 and 2023, calculated the dynamic degree and landscape pattern index, and analyzed the dynamic spatiotemporal evolution of mangroves in the study area from 1995 to 2023. Results indicate that over the past nearly 30 years, mangrove forests in Pearl Bay have changed significantly in terms of area composition and spatial location, presenting an overall trend of decreasing first and then increasing. The period with the highest dynamic degree is 2005-2010, during which the mangrove area increased to 836.21 hectares, with a dynamic degree of 3.59%. The calculation of the landscape pattern index shows that the fragmentation and landscape differentiation degree generally exhibit a trend of increasing first and then decreasing, while the aggregation degree is relatively stable. The spatial evolution of the mangroves are related to natural factors such as precipitation, temperature, sediment deposition, and pest damage, and are closely related to human activities such as pond culture.
[1] | ALONGI D M. Carbon cycling and storage in mangrove forests[J]. Annual Review of Marine Science,2014,6:195-219. doi: 10.1146/annurev-marine-010213-135020 |
[2] | LIU H X,REN H,HUI D F,et al. Carbon stocks and potential carbon storage in the mangrove forests of China[J]. Journal of Environmental Management,2014,133(15):86-93. |
[3] | ALONGI D M. Carbon sequestration in mangrove forests[J]. Carbon management,2012,3(3):313-322. doi: 10.4155/cmt.12.20 |
[4] | 张尧,孟宪伟,夏鹏,等. 不同时间尺度红树林演化的示踪方法及受控机制[J]. 海洋地质与第四纪地质,2024,44(3):197-210. ZHANG Y,MENG X W,XIA P,et al. Research progress on mangrove development in different time scales[J]. Marine Geology & Quaternary Geology,2024,44(3):197-210. |
[5] | 庞国涛,杨源祯,张晓磊,等. 广西珍珠湾红树林湿地沉积物烃类物质的分布及来源解析[J]. 海洋地质前沿,2023,39(8):70-77. PANG G T,YANG Y Z,ZHANG X L,et al. Distribution and source analysis of hydrocarbons in sediments of Zhenzhu Bay Mangrove Wetland in Guangxi[J]. Marine Geology Frontiers,2023,39(8):70-77. |
[6] | 张越,朱虹霓,王一清,等. 海南文昌清澜湾红树林潮沟地下水溶解碳通量的潮汐动态[J]. 海洋地质前沿,2024,40(5):27-39. ZHANG Y,ZHU H N,WANG Y Q,et al. Tidal dynamics of dissolved carbon flux in ground water of a mangrove tidal creek in Qinglan Bay,Wenchang,Hainan[J]. Marine Geology Frontiers,2024,40(5):27-39. |
[7] | 李炎,陈一宁. 基于能量耗散视角的红树林海岸沉积地貌学[J]. 海洋地质与第四纪地质,2023,43(6):25-33. LI Y,CHEN Y N. Sedimentary geomorphology of mangrove coasts in perspective of energy dissipation[J]. Marine Geology & Quaternary Geology,2023,43(6):25-33. |
[8] | WANG L,SHI C,TIAN J,et al. Researches on mangrove forest monitoring methods based on multi-source remote sensing[J]. Biodiversity Science,2018,26(8):838-849. |
[9] | 苏治南,倪翔,范航清,等. 广西珍珠湾红树林区中华乌塘鳢的时空分布特征[J]. 广西科学院学报,2021,37(3):232-239. SU Z N,NI X,FAN H Q,et al. Temporal and spatial variation of population of Bostrychus sinensis in the mangrove area of Pearl Bay,Guangxi[J]. Journal of Guangxi Academy of Sciences,2021,37(3):232-239. |
[10] | 王亚丽. 北部湾典型红树林区域海底地下水排放的碳通量及其光学特征[D]. 上海:华东师范大学,2020. WANG Y L. Carbon fluxes by submarine groundwater discharge and its optical characteristics in typical mangrove areas of the Beibu Gulf[D]. Shanghai:East China Normal University,2020. |
[11] | 何彬元. 广西珍珠港红树林湿地保护与恢复对策[J]. 湿地科学与管理,2017,13(2):45-47. doi: 10.3969/j.issn.1673-3290.2017.02.10 HE B Y. Mangrove wetland protection and restoration strategies in Guangxi Pearl Harbor[J]. Wetland Science & Management,2017,13(2):45-47. doi: 10.3969/j.issn.1673-3290.2017.02.10 |
[12] | 陶玉华,黄星,王薛平,等. 广西珍珠湾三种红树林林分土壤碳氮储量的研究[J]. 广西植物,2020,40(3):285-292. doi: 10.11931/guihaia.gxzw201909003 TAO Y H,HUANG X,WANG X P,et al. Soil carbon and nitrogen storages in three mangrove stands of Zhenzhu Gulf,Guangxi[J]. Guihaia,2020,40(3):285-292. doi: 10.11931/guihaia.gxzw201909003 |
[13] | WU B,ZHANG W Z,TIAN Y C,et al. Characteristics and carbon storage of a typical mangrove island ecosystem in Beibu Gulf,South China Sea[J]. Journal of Resources and Ecology,2022,13(3):458-465. |
[14] | 马云梅. 基于国产多源高分遥感的广西红树林种间分类研究[D]. 呼和浩特:内蒙古师范大学,2020. MA Y M. Classification of mangrove species in Guangxi based on domestic multi-source high-resolution remote sensing[D]. Hohhot:Inner Mongolia Normal University,2020. |
[15] | GIRI C,OCHIENG E,TIESZEN L L,et al. Status and distribution of mangrove forests of the world using earth observation satellite data[J]. Global Ecology and Biogeography,2011,20(1):154-159. doi: 10.1111/j.1466-8238.2010.00584.x |
[16] | KUENZER C,BLUEMEL A,GEBHARDT S,et al. Remote sensing of mangrove ecosystems:a review[J]. Remote Sensing,2011,3(5):878-928. doi: 10.3390/rs3050878 |
[17] | DUKE N C,MEYNECKE J O,DITTMANN S,et al. A world without mangroves?[J]. Science,2007,317(5834):41-42. |
[18] | RHYMA P,NORIZAH K,ADNAN I,et al. A review of uses of satellite imagery in monitoring mangrove forests[C]//IOP Conference Series:Earth & Environmental Science,United Kingdom:IOP Publishing Ltd. ,2016,37(1):012034. |
[19] | CÁRDENAS N Y,JOYCE K E,MAIER S W. Monitoring mangrove forests:are we taking full advantage of technology?[J]. International Journal of Applied Earth Observation and Geoinformation,2017,63:1-14. doi: 10.1016/j.jag.2017.07.004 |
[20] | BOYD D S,DANSON F M. Satellite remote sensing of forest resources:three decades of research development[J]. Progress in Physical Geography,2005,29(1):1-26. doi: 10.1191/0309133305pp432ra |
[21] | 张雪红. 基于知识与规则的红树林遥感信息提取[J]. 南京信息工程大学学报(自然科学版),2011,3(4):341-345. ZHANG X H. Remote sensing information extraction of mangrove based on knowledge and rules[J]. Journal of Nanjing University of Information Science & Technology,2011,3(4):341-345. |
[22] | 袁胜. 基于Google Earth Engine的广西红树林分布提取研究[J]. 湖南林业科技,2021,48(5):34-39. doi: 10.3969/j.issn.1003-5710.2021.05.007 YUAN S. Research on extraction of mangrove distribution information in Guangxi by Google Earth Engine[J]. Hunan Forestry Science & Technology,2021,48(5):34-39. doi: 10.3969/j.issn.1003-5710.2021.05.007 |
[23] | 边福强,王晓宇,杨志,等. 应用珠海一号卫星高光谱数据的红树林遥感提取方法[J]. 航天器工程,2021,30(6):182-187. doi: 10.3969/j.issn.1673-8748.2021.06.023 BIAN F Q,WANG X Y,YANG Z,et al. Remote sensing extraction method of mangrove forest using Zhuhai-1 satellite hyperspectral data[J]. Spacecraft Engineering,2021,30(6):182-187. doi: 10.3969/j.issn.1673-8748.2021.06.023 |
[24] | 王思阳,路毅. 深度学习与全景图像技术在植物景观指标量化中的应用研究[J]. 北方农业学报,2023,51(2):126-134. doi: 10.12190/j.issn.2096-1197.2023.02.15 WANG S Y,LU Y. Research on the application of deep learning and panoramic imaging technology in plant landscape index quantification[J]. Journal of Northern Agriculture,2023,51(2):126-134. doi: 10.12190/j.issn.2096-1197.2023.02.15 |
[25] | 王雪,罗新正. 海平面上升对广西珍珠港红树林分布的影响[J]. 烟台大学学报(自然科学与工程版),2013,26(3):225-230. WANG X,LUO X Z. Impact of sea level rise on mangrove distribution in Guangxi Pearl Harbor[J]. Journal of Yantai University (Natural Science and Engineering Edition),2013,26(3):225-230. |
[26] | 范航清,刘文爱,钟才荣,等. 中国红树林蛀木团水虱危害分析研究[J]. 广西科学,2014,21(2):140-146,152. FAN H Q,LIU W A,ZHONG C R,et al. Analytic study on the damages of wood-boring isopod,sphaeroma,to China mangroves[J]. Guangxi Sciences,2014,21(2):140-146,152. |
[27] | 王亚丽,张芬芬,陈小刚,等. 海底地下水排放对典型红树林蓝碳收支的影响:以广西珍珠湾为例[J]. 海洋学报,2020,42(10):37-46. WANG Y L,ZHANG F F,CHEN X G,et al. Influence of submarine groundwater discharge in the blue carbon budget of typical mangrove:a case study from the Zhenzhu Bay,Guangxi[J]. Haiyang Xuebao,2020,42(10):37-46. |
[28] | 李博伦. 基于遥感的中国稻田甲烷排放估算研究[D]. 北京:中国科学院大学,2024. LI B L. Estimating methane emission from rice paddies in China based on remote sensing[D]. Beijing:University of Chinese Academy of Sciences,2014. |
[29] | 李忠锋,王一谋,冯毓荪,等. 基于RS与GIS的榆林地区土地利用变化分析[J]. 水土保持学报,2003,17(2):97-99,140. doi: 10.3321/j.issn:1009-2242.2003.02.027 LI Z F,WANG Y M,FENG Y S,et al. Analysis of land-use change in Yulin Prefecture based on RS and GIS[J]. Journal of Soil and Water Conservation,2003,17(2):97-99,140. doi: 10.3321/j.issn:1009-2242.2003.02.027 |
[30] | 刘明月. 中国滨海湿地互花米草入侵遥感监测及变化分析[D]. 长春:中国科学院大学(中国科学院东北地理与农业生态研究所),2024. LIU M Y. Remote sensing analysis of Spartina alterniflora in the coastal areas of China during 1990 to 2015[D]. Changchun:Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences,2024. |
[31] | 夏鹏,孟宪伟,李珍,等. 广西海岸带近百年来人类活动影响下环境演变的沉积记录[J]. 沉积学报,2012,30(2):325-332. XIA P,MENG X W,LI Z,et al. Sedimentary records of environmental evolution during the recent 100 years in the coastal zone of Guangxi Province[J]. Acta Sedimentologica Sinica,2012,30(2):325-332. |
[32] | 郑法,黄福林,陈泽恒,等. 基于LUCC和景观格局变化的广西山口红树林湿地动态研究[J]. 热带海洋学报,2024,43(4):165-173. doi: 10.11978/2023103 ZHENG F,HUANG F L,CHEN Z H,et al. Mangrove wetland dynamics in Shankou,Guangxi based on LUCC and landscape pattern change[J]. Journal of Tropical Oceanography,2024,43(4):165-173. doi: 10.11978/2023103 |
[33] | 郭盛才. 广东湿地资源保护管理现状及其对策研究[J]. 林业与环境科学,2011,27(2):100-103. doi: 10.3969/j.issn.1006-4427.2011.02.019 GUO S C. Research on protection and management status of wetland resources in Guangdong and its countermeasures[J]. Forestry and Environmental Science,2011,27(2):100-103. doi: 10.3969/j.issn.1006-4427.2011.02.019 |
Location of the study area
Spectral reflection information of various ground objects from Landsat8 OLI sensors
The correlation curve between tassels and various ground objects from Landsat8 OLI sensors
Image classification process
Landsat8 OLI tasseled cap transformation for the study area
Statistical histograms of greenness and humidity transformed by Landsat8 OLI cap
Decision tree classification result
Field verification of mangrove forests in Pearl Bay, Guangxi
Distribution of mangrove forests in Pearl Bay, Guangxi from 1995 to 2023
Evolution of mangrove forests in Pearl Bay, Guangxi from 1995 to 2023
Areas and dynamic degrees of mangrove in Pearl Bay, Guangxi from 1995 to 2023
Mangrove area, annual mean temperature, and annual mean rainfall in the study area
Map of changes in the distribution of cultured areas in Pearl Bay