2025 Vol. 41, No. 4
Article Contents

WANG Shijun, LI Chao, DUAN Zhifei, GUO Yulong, DUAN Xiaoyong, YIN Ping, YANG Shouye. Weathering characteristics in the Red River catchment and controlling factors revealed by sediments with different grain sizes[J]. Marine Geology Frontiers, 2025, 41(4): 4-15. doi: 10.16028/j.1009-2722.2024.201
Citation: WANG Shijun, LI Chao, DUAN Zhifei, GUO Yulong, DUAN Xiaoyong, YIN Ping, YANG Shouye. Weathering characteristics in the Red River catchment and controlling factors revealed by sediments with different grain sizes[J]. Marine Geology Frontiers, 2025, 41(4): 4-15. doi: 10.16028/j.1009-2722.2024.201

Weathering characteristics in the Red River catchment and controlling factors revealed by sediments with different grain sizes

More Information
  • Historically, the Red River served as the outlet to the sea for major rivers in the eastern edge of the Tibetan Plateau and is currently one of the main sources of sediment to the northern South China Sea. It is an ideal region for studying the source-sink processes and tectonic-climate-weathering relationships in the South China Sea since the uplift of the Tibetan Plateau. To understand the main controlling factors of silicate weathering in the catchment, we compared the major element characteristics and CIA (chemical index of alteration) of sediments with different grain sizes in the Red River and its tributaries, and analyzed the correlation between CIA and environmental parameters regarding climate, topography, and lithology. Results indicate that coarse-grained sediments are a mixture of quartz and feldspar, and their major element content is significantly influenced by grain size effects and quartz dilution effects, showing no correlation with any environmental parameters. Hence, their CIA may not accurately reflect chemical weathering. In contrast, fine-grained sediments can represent the average composition of the upstream catchment, and their CIA primarily reflects the degree of chemical weathering in the catchment. Through the correlation analysis between the CIA of fine-grained sediments and environmental parameters, we found that rainfall and slope are the main controlling factors on weathering in the Red River catchment.

  • 加载中
  • [1] BERNER R A,LASAGA A C,GARRELS R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon-dioxide over the past 100 million years[J]. American Journal of Science,1983,283(7):641-683. doi: 10.2475/ajs.283.7.641

    CrossRef Google Scholar

    [2] WALKER J C G,HAYS P B,KASTING J F. A negative feedback mechanism for the long-term stabilization of earths surface-temperature[J]. Journal of Geophysical Research-Oceans,1981,86(10):9776-9782.

    Google Scholar

    [3] MCLENNAN S M. Weathering and global denudation[J]. Journal of Geology,1993,101(2):295-303. doi: 10.1086/648222

    CrossRef Google Scholar

    [4] NESBITT H W,YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature,1982,299(5885):715-717. doi: 10.1038/299715a0

    CrossRef Google Scholar

    [5] PARKER A F W. An index of weathering for silicate rocks[J]. Geological Magazine,1970,107:501-504. doi: 10.1017/S0016756800058581

    CrossRef Google Scholar

    [6] HARNOIS L. The CIW index:a new chemical index of weathering[J]. Sedimentary Geology,1988,55(3):319-322.

    Google Scholar

    [7] GAILLARDET J,DUPRÉ B,ALLÈGRE C J. Geochemistry of large river suspended sediments:silicate weathering or recycling tracer?[J]. Geochimica et Cosmochimica Acta,1999,63(23):4037-4051.

    Google Scholar

    [8] GARZANTI E,PADOAN M,SETTI M,et al. Weathering geochemistry and Sr-Nd fingerprints of equatorial upper Nile and Congo muds[J]. Geochemistry,Geophysics,Geosystems,2013,14(2):292-316.

    Google Scholar

    [9] CHETELAT B,LIU C Q,WANG Q,et al. Assessing the influence of lithology on weathering indices of Changjiang River sediments[J]. Chemical Geology,2013,359:108-115. doi: 10.1016/j.chemgeo.2013.09.018

    CrossRef Google Scholar

    [10] SHAO J Q,YANG S Y,LI C. Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China:inferences from analysis of fluvial sediments[J]. Sedimentary Geology,2012,265/266:110-120. doi: 10.1016/j.sedgeo.2012.03.020

    CrossRef Google Scholar

    [11] BORGES J B,HUH Y,MOON S,et al. Provenance and weathering control on river bed sediments of the eastern Tibetan Plateau and the Russian Far East[J]. Chemical Geology,2008,254(1/2):52-72.

    Google Scholar

    [12] LIU Z F,ZHAO Y L,COLIN C,et al. Source-to-sink transport processes of fluvial sediments in the South China Sea[J]. Earth-Science Reviews,2016,153:238-273. doi: 10.1016/j.earscirev.2015.08.005

    CrossRef Google Scholar

    [13] VITAL H,STATTEGGER K. Major and trace elements of stream sediments from the lowermost Amazon River[J]. Chemical Geology,2000,168(1):151-168.

    Google Scholar

    [14] TRIPATHI J K,GHAZANFARI P,RAJAMANI V,et al. Geochemistry of sediments of the Ganges alluvial plains:evidence of large-scale sediment recycling[J]. Quaternary International,2007,159(1):119-130. doi: 10.1016/j.quaint.2006.08.016

    CrossRef Google Scholar

    [15] 方海超,黄朋,孙家文,等. 鸭绿江端元粒度分级样品常量元素控制因素分析及物源识别[J]. 海洋地质与第四纪地质,2019,39(3):72-83.

    Google Scholar

    FANG H C,HUANG P,SUN J W,et al. Provenance and controlling factors of major elements in graded components of sediments from the Yalu River[J]. Marine Geology & Quaternary Geology,2019,39(3):72-83.

    Google Scholar

    [16] 苏妮,毕磊,郭玉龙,等. 木兰溪河口及邻近海域表层沉积物稀土元素组成与物源判别[J]. 海洋地质与第四纪地质,2018,38(1):150-159.

    Google Scholar

    SU N,BI L,GUO Y L,et al. Rare earth element compositions and provenance implications:a case from sediments of the Mulanxi River Estuary and surrounding sea area[J]. Marine Geology & Quaternary Geology,2018,38(1):150-159.

    Google Scholar

    [17] DINIS P,GARZANTI E,VERMEESCH P,et al. Climatic zonation and weathering control on sediment composition (Angola)[J]. Chemical Geology,2017,467:110-121. doi: 10.1016/j.chemgeo.2017.07.030

    CrossRef Google Scholar

    [18] WEST A,GALY A,BICKLE M. Tectonic and climatic controls on silicate weathering[J]. Earth and Planetary Science Letters,2005,235(1/2):211-228.

    Google Scholar

    [19] EGLI M,MIRABELLA A,SARTORI G. The role of climate and vegetation in weathering and clay mineral formation in Late Quaternary soils of the Swiss and Italian Alps[J]. Geomorphology,2008,102(3):307-324.

    Google Scholar

    [20] JU M,WAN S,CLIFT P D,et al. History of human activity in South China since 7 cal ka BP:evidence from a sediment record in the South China Sea[J]. Quaternary Science Reviews,2024,333:108683. doi: 10.1016/j.quascirev.2024.108683

    CrossRef Google Scholar

    [21] RAYMO M E,RUDDIMAN W F. Tectonic forcing of Late Cenozoic climate[J]. Nature,1992,359(6391):117-122. doi: 10.1038/359117a0

    CrossRef Google Scholar

    [22] BI L,YANG S Y,LI C,et al. Geochemistry of river-borne clays entering the East China Sea indicates two contrasting types of weathering and sediment transport processes[J]. Geochemistry,Geophysics,Geosystems,2015,16(9):3034-3052.

    Google Scholar

    [23] YANG J H,CAWOOD P A,DU Y S,et al. Reconstructing Early Permian tropical climates from chemical weathering indices[J]. Geological Society of America Bulletin,2016,128(5/6):739-751.

    Google Scholar

    [24] DENG K,YANG S Y,GUO Y L. A global temperature control of silicate weathering intensity[J]. Nature Communications,2022,13(1):1781. doi: 10.1038/s41467-022-29415-0

    CrossRef Google Scholar

    [25] LI C,YANG S Y. Is chemical index of alteration (CIA) a reliable proxy for chemical weathering in global drainage basins?[J]. American Journal of Science,2010,310(2):111-127. doi: 10.2475/02.2010.03

    CrossRef Google Scholar

    [26] LIU Z F,COLIN C,HUANG W,et al. Climatic and tectonic controls on weathering in South China and Indochina Peninsula:clay mineralogical and geochemical investigations from the Pearl,Red,and Mekong drainage basins[J]. Geochemistry,Geophysics,Geosystems,2007,8(5):Q05005.

    Google Scholar

    [27] CLARK M K,SCHOENBOHM L M,ROYDEN L H,et al. Surface uplift,tectonics,and erosion of eastern Tibet from large-scale drainage patterns[J]. Tectonics,2004,23(1):601-620.

    Google Scholar

    [28] CLIFT P D,LONG H V,HINTON R,et al. Evolving East Asian river systems reconstructed by trace element and Pb and Nd isotope variations in modern and ancient Red River-Song Hong sediments[J]. Geochemistry,Geophysics,Geosystems,2008,9(4):Q04039.

    Google Scholar

    [29] LI Z,SAITO Y,MATSUMOTO E,et al. Climate change and human impact on the Song Hong (Red River) Delta,Vietnam,during the Holocene[J]. Quaternary International,2006,144(1):4-28. doi: 10.1016/j.quaint.2005.05.008

    CrossRef Google Scholar

    [30] LE T P Q,GARNIER J,GILLES B,et al. The changing flow regime and sediment load of the Red River,Viet Nam[J]. Journal of Hydrology,2007,334(1):199-214.

    Google Scholar

    [31] LAN C Y,CHUNG S L,SHEN J J S,et al. Geochemical and Sr-Nd isotopic characteristics of granitic rocks from northern Vietnam[J]. Journal of Asian Earth Sciences,2000,18(3):267-280. doi: 10.1016/S1367-9120(99)00063-2

    CrossRef Google Scholar

    [32] LELOUP P H,ARNAUD N,LACASSIN R,et al. New constraints on the structure,thermochronology,and timing of the Ailao Shan-Red River shear zone,SE Asia[J]. Journal of Geophysical Research:Solid Earth,2001,106(B4):6683-6732. doi: 10.1029/2000JB900322

    CrossRef Google Scholar

    [33] BORGES J,HUH Y. Petrography and chemistry of the bed sediments of the Red River in China and Vietnam:provenance and chemical weathering[J]. Sedimentary Geology,2007,194(3/4):155-168.

    Google Scholar

    [34] TRAN H,POLYAKOV G V,TRAN A T,et al. Intraplate Magmatism and Metallogeny of North Vietnam[M]. Cham:Springer International Publishing,2015.

    Google Scholar

    [35] HE J,GARZANTI E,JIANG T,et al. Mineralogy and geochemistry of modern Red River sediments (North Vietnam):provenance and weathering implications[J]. Journal of Sedimentary Research,2022,92:1169-1185. doi: 10.2110/jsr.2022.045

    CrossRef Google Scholar

    [36] LEHNER B,GRILL G. Global river hydrography and network routing:baseline data and new approaches to study the world's large river systems[J]. Hydrological Processes,2013,27(15):2171-2186. doi: 10.1002/hyp.9740

    CrossRef Google Scholar

    [37] FICK S E,HIJMANS R J. World Clim 2:new 1-km spatial resolution climate surfaces for global land areas[J]. International Journal of Climatology,2017,37(12):4302-4315. doi: 10.1002/joc.5086

    CrossRef Google Scholar

    [38] BOUCHEZ J,GAILLARDET J,FRANCELANORD C,et al. Grain size control of river suspended sediment geochemistry:clues from Amazon River depth profiles[J]. Geochemistry,Geophysics,Geosystems,2011,12(3):Q03008.

    Google Scholar

    [39] LI F L,YANG S Y,BREECKER D O,et al. Responses of silicate weathering intensity to the Pliocene-Quaternary cooling in East and Southeast Asia[J]. Earth and Planetary Science Letters,2022,578:117301. doi: 10.1016/j.jpgl.2021.117301

    CrossRef Google Scholar

    [40] GARZANTI E,ANDÓ S,FRANCE-LANORD C,et al. Mineralogical and chemical variability of fluvial sediments:2. suspended-load silt (Ganga–Brahmaputra,Bangladesh)[J]. Earth and Planetary Science Letters,2011,302(1):107-120.

    Google Scholar

    [41] GARZANTI E,ANDÒ S,FRANCE-LANORD C,et al. Mineralogical and chemical variability of fluvial sediments:1. bedload sand (Ganga–Brahmaputra,Bangladesh)[J]. Earth and Planetary Science Letters,2010,299(3):368-381.

    Google Scholar

    [42] LUPKER M,FRANCE-LANORD C,GALY V,et al. Predominant floodplain over mountain weathering of Himalayan sediments (Ganga Basin)[J]. Geochimica et Cosmochimica Acta,2012,84:410-432. doi: 10.1016/j.gca.2012.02.001

    CrossRef Google Scholar

    [43] 宁泽,张勇,林学辉,等. 闽北近岸海域表层沉积物的风化特征及物源指示[J]. 海洋地质前沿,2020,36(10):12-21.

    Google Scholar

    NING Z,ZHANG Y,LIN X H,et al. Weathering characteristics and provenance of the surface sediments in the offshore of northern Fujian[J]. Marine Geology Frontiers,2020,36(10):12-21.

    Google Scholar

    [44] HATANO N,YOSHIDA K,SASAO E. Effects of grain size on the chemical weathering index:a case study of Neogene fluvial sediments in southwest Japan[J]. Sedimentary Geology,2019,386:1-8. doi: 10.1016/j.sedgeo.2019.03.017

    CrossRef Google Scholar

    [45] EYNATTEN H V,TOLOSANA-DELGADO R,KARIUS V. Sediment generation in modern glacial settings:grain-size and source-rock control on sediment composition[J]. Sedimentary Geology,2012,280:80-92. doi: 10.1016/j.sedgeo.2012.03.008

    CrossRef Google Scholar

    [46] GARZANTI E,VERMEESCH P,VEZZOLI G,et al. Congo River sand and the equatorial quartz factory[J]. Earth-Science Reviews,2019,197:102918. doi: 10.1016/j.earscirev.2019.102918

    CrossRef Google Scholar

    [47] DUAN Z F,LI C,GUO Y L,et al. Sr-Nd isotopic fingerprints of Red River sediments and its implication for provenance discrimination in the South China Sea[J]. Marine Geology,2023,457:106997. doi: 10.1016/j.margeo.2023.106997

    CrossRef Google Scholar

    [48] PANG H L,PAN B T,GARZANTI E,et al. Mineralogy and geochemistry of modern Yellow River sediments:implications for weathering and provenance[J]. Chemical Geology,2018,488:76-86. doi: 10.1016/j.chemgeo.2018.04.010

    CrossRef Google Scholar

    [49] RASHID S A,GANAI J A,MASOODI A,et al. Major and trace element geochemistry of lake sediments,India:implications for weathering and climate control[J]. Arabian Journal of Geosciences,2015,8(8):5677-5684. doi: 10.1007/s12517-014-1639-9

    CrossRef Google Scholar

    [50] MAHER K. The role of fluid residence time and topographic scales in determining chemical fluxes from landscapes[J]. Earth and Planetary Science Letters,2011,312(1):48-58.

    Google Scholar

    [51] SCHOENBOHM,MARIE L. Cenozoic tectonic and geomorphic evolution of the Red River region,Yunnan Province,China[D]. Cambridge:Massachusetts Institute of Technology,2004.

    Google Scholar

    [52] MEYBECK M. Global chemical weathering of surficial rocks estimated from river dissolved loads[J]. American Journal of Science,1987,287(5):401-428. doi: 10.2475/ajs.287.5.401

    CrossRef Google Scholar

    [53] CHETELAT B,LIU C Q,ZHAO Z Q,et al. Geochemistry of the dissolved load of the Changjiang Basin rivers:anthropogenic impacts and chemical weathering[J]. Geochimica et Cosmochimica Acta,2008,72(17):4254-4277. doi: 10.1016/j.gca.2008.06.013

    CrossRef Google Scholar

    [54] GUO Y L,YANG S Y,SU N,et al. Revisiting the effects of hydrodynamic sorting and sedimentary recycling on chemical weathering indices[J]. Geochimica et Cosmochimica Acta,2018,227:48-63. doi: 10.1016/j.gca.2018.02.015

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(40) PDF downloads(7) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint