2024 Vol. 40, No. 11
Article Contents

LIU Wenliang, FA Hongjie, BA Yinji, YANG Yuanzhen, LIU Jingqiang. Estimation of the aboveground biomass of mangrove forest in Zhenzhu Bay, Guangxi[J]. Marine Geology Frontiers, 2024, 40(11): 35-45. doi: 10.16028/j.1009-2722.2024.160
Citation: LIU Wenliang, FA Hongjie, BA Yinji, YANG Yuanzhen, LIU Jingqiang. Estimation of the aboveground biomass of mangrove forest in Zhenzhu Bay, Guangxi[J]. Marine Geology Frontiers, 2024, 40(11): 35-45. doi: 10.16028/j.1009-2722.2024.160

Estimation of the aboveground biomass of mangrove forest in Zhenzhu Bay, Guangxi

More Information
  • Mangrove wetlands are one of the most productive ecosystems and important blue carbon sinks. Accurate estimation of aboveground biomass (AGB) of mangroves holds great significance. By integrating field-measured AGB data with Sentinel-1/2 satellite backscatter coefficient, reflectance, vegetation index, and texture feature data, we employed a stepwise multiple regression and partial least squares regression (PLSR) approach to compare the modeling results of different variable combinations and estimated the AGB of mangroves in the Zhenzhu Bay area, Guangxi, SW China, based on the optimal model. Results indicate that: ① The multi-type feature combination model selected by the continuous PLSR algorithm showed the best performance (the coefficient of determination R2=0.88; the root mean square error RMSE=16.07 t/hm2). Among them, the Corp2_3 (the texture variable correlation of the second principal component PC2 of Sentinel-2A in a 3×3 window) contributed the greatest to the modeling; ② The total and average AGB of mangroves in the Zhenzhu Bay area were approximately 45 956.41 t and 48.06 t/hm2, respectively. In the spatial distribution of the predicted AGB value, it shows an overall higher level in the central and eastern parts of the area and a slightly lower level in the western part. The high-value areas covered mainly those near human activities such as shrimp farming ponds and oyster rafts, while low-value areas mainly in semi-tidal wetlands or areas with more seedlings; ③ The combination of synthetic aperture radar (SAR) and optical data could effectively enhance the accuracy of AGB inversion. Using just Sentinel-1 backscatter coefficient and derived factors is not feasible to invert biomass, and modeling with texture variables could produce better results than those with reflectance and vegetation index.

  • 加载中
  • [1] 范航清. 红树林:海岸环保卫士[M]. 南宁:广西科学技术出版社,2000.

    Google Scholar

    FAN Hangqing. Mangroves:Coastal Environmental Protectors [M]. Nanning:Guangxi Science and Technology Press,2000.

    Google Scholar

    [2] 李炎,陈一宁. 基于能量耗散视角的红树林海岸沉积地貌学[J]. 海洋地质与第四纪地质,2023,43(6):25-33.

    Google Scholar

    LI Yan,CHEN Yining. Sedimentary geomorphology of mangrove coasts in perspective of energy dissipation[J]. Marine Geology & Quaternary Geology,2023,43(6):25-33.

    Google Scholar

    [3] 张越,朱虹霓,王一清,等. 海南文昌清澜湾红树林潮沟地下水溶解碳通量的潮汐动态[J]. 海洋地质前沿,2024,40(5):27-39.

    Google Scholar

    ZHANG Yue,ZHU Hongni,WANG Yiqing,et al. Tidal dynamics of dissolved carbon flux in ground water of a mangrove tidal creek in Qinglan Bay,Wenchang,Hainan[J]. Marine Geology Frontiers,2024,40(5):27-39.

    Google Scholar

    [4] KOMIYAMA A,ONG J E,POUNGPARN S. Allometry,biomass,and productivity of mangrove forests:a review[J]. Aquatic Botany,2008,89(2):128-137. doi: 10.1016/j.aquabot.2007.12.006

    CrossRef Google Scholar

    [5] 赵天舸,于瑞宏,张志磊,等. 湿地植被地上生物量遥感估算方法研究进展[J]. 生态学杂志,2016,35(7):1936-1946.

    Google Scholar

    ZHAO Tianke,YU Ruihong,ZHANG Zhilei,et al. Estimation of wetland vegetation aboveground biomass based on remote sensing data:a review[J]. Chinese Journal of Ecology,2016,35(7):1936-1946.

    Google Scholar

    [6] 曹庆先,徐大平,鞠洪波. 北部湾沿海5种红树林群落生物量的遥感估算[J]. 广西科学,2011,18(3):289-293. doi: 10.3969/j.issn.1005-9164.2011.03.027

    CrossRef Google Scholar

    CAO Qingxian,XU Daping,JU Hongbo. Biomass estimation of five kinds of mangrove community in Beibu Gulf based on remote sensing[J]. Guangxi Sciences,2011,18(3):289-293 doi: 10.3969/j.issn.1005-9164.2011.03.027

    CrossRef Google Scholar

    [7] DUC L N,TRONG C N,S Y H L,et al. Mangrove mapping and above-ground biomass change detection using satellite images in coastal areas of Thai Binh Province,Vietnam[J]. Forest and Society,2019,3(2):248-248. doi: 10.24259/fs.v3i2.7326

    CrossRef Google Scholar

    [8] BALOLOY A ,BLANCO C A,CANDIDO G C,et al. Estimation of mangrove forest aboveground biomass using multispectral bands,vegetation indices and biophysical variables derived from optical satellite imageries:rapideye,planetscope and Sentinel-2[J]. ISPRS Annals of Photogrammetry,Remote Sensing and Spatial Information Sciences,2018,4(3),29-36.

    Google Scholar

    [9] ZHU Y H,LIU K,LIU L,et al. Retrieval of mangrove aboveground biomass at the individual species level with WorldView-2 images[J]. Remote Sensing,2015,7(9):12192-12214 doi: 10.3390/rs70912192

    CrossRef Google Scholar

    [10] HIRATA Y,TABUCHI R,PATANAPONPAIBOON P,et al. Estimation of aboveground biomass in mangrove forests using high-resolution satellite data[J]. Journal of Forest Research,2014,19(1):34-41. doi: 10.1007/s10310-013-0402-5

    CrossRef Google Scholar

    [11] KARIMON M N,ALI Y H,MARIANNE L L V,et al. Modeling and mapping aboveground biomass of the restored mangroves using ALOS-2 PALSAR-2 in East Kalimantan,Indonesia[J]. International Journal of Applied Earth Observations and Geoinformation,2020,91(C):102158.

    Google Scholar

    [12] NAVARRO A J,ALGEET N,FERNÁNDEZ-LANDA A,et al. Integration of UAV,Sentinel-1,and Sentinel-2 data for mangrove plantation aboveground biomass monitoring in Senegal[J]. Remote Sensing,2019,11(1):77-100. doi: 10.3390/rs11010077

    CrossRef Google Scholar

    [13] WANG D Z,WAN B,LIU J,et al. Estimating aboveground biomass of the mangrove forests on northeast Hainan Island in China using an upscaling method from field plots,UAV-LiDAR data and Sentinel-2 imagery[J]. International Journal of Applied Earth Observation and Geoinformation,2020,85(C):101986-101986.

    Google Scholar

    [14] 吴培强,任广波,张程飞,等. 无人机多光谱和LiDAR的红树林精细识别与生物量估算[J]. 遥感学报,2022,26(6):1169-1181.

    Google Scholar

    WU Peiqiang,REN Guangbo,ZHANG Chengfei,et al. Fine identification and biomass estimation of mangroves based on UAV multispectral and LiDAR[J]. National Remote Sensing Bulletin,2022,26(6):1169-1181.

    Google Scholar

    [15] 罗谨璇,田义超,张强,等. 利用无人机激光雷达估算红树林地上生物量[J]. 海洋学报,2023,45(8):108-119.

    Google Scholar

    LUO Jinxuan,TIAN Yichao,ZHANG Qiang,et al. Estimation of aboveground biomass of mangrove forest using UAV-LiDAR[J]. Haiyang Xuebao,2023,45(8):108-119,

    Google Scholar

    [16] TIAN Y C,HUANG H,ZHOU G Q,et al. Aboveground mangrove biomass estimation in Beibu Gulf using machine learning and UAV remote sensing[J]. Science of the Total Environment,2021,781:146816. doi: 10.1016/j.scitotenv.2021.146816

    CrossRef Google Scholar

    [17] SIMARD M,FATOYINBO L,SMETANKA C,et al. Mangrove canopy height globally related to precipitation,temperature and cyclone frequency[J]. Nature Geoscience,2019,12(1):40-45. doi: 10.1038/s41561-018-0279-1

    CrossRef Google Scholar

    [18] 闻馨,刘凯,曹晶晶,等. 基于森林冠层高度和异速生长方程的中国红树林地上生物量估算[J]. 热带地理,2023,43(1):1-11.

    Google Scholar

    WEN Xin,LIU Kai,CAO Jingjing,et al. Estimation of mangrove aboveground biomass in China using forest canopy height through an allometric equation[J]. Tropical Geography,2023,43(1):1-11.

    Google Scholar

    [19] 周蔚,吕延杰,林起楠. 联合光学和合成孔径雷达数据的太平湖森林地上生物量反演研究[J]. 西北林学院学报,2023,38(2):193-200. doi: 10.3969/j.issn.1001-7461.2023.02.27

    CrossRef Google Scholar

    ZHOU Wei,LYU Yanjie,LIN Qinan. Retrieval of aboveground biomass in Taiping Lake Forests using optical and SAR dataset[J]. Journal of Northwest Forestry University,2023,38(2):193-200. doi: 10.3969/j.issn.1001-7461.2023.02.27

    CrossRef Google Scholar

    [20] 潘磊,孙玉军,王轶夫,等. 基于Sentinel-1和Sentinel-2数据的杉木林地上生物量估算[J]. 南京林业大学学报(自然科学版),2020,44(3):149-156.

    Google Scholar

    PAN Lei,SUN Yujun,WANG Yifu,et al. Estimation of aboveground biomass in a Chinese fir (Cunninghamia lanceolata) forest combining data of Sentinel-1 and Sentinel-2[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2020,44(3):149-156.

    Google Scholar

    [21] 张少伟,惠刚盈,韩宗涛,等. 基于光学多光谱与SAR遥感特征快速优化的大区域森林地上生物量估测[J]. 遥感技术与应用,2019,34(5):925-938.

    Google Scholar

    ZHANG Shaowei,HUI Gangying,Han Zongtao,et al. Estimation of large-scale forest aboveground biomass based on fast optimizing remotely sensed features from optical multi-spectral and SAR data[J]. Remote Sensing Technology and Application,2019,34(5):925-938.

    Google Scholar

    [22] PHAM D T,YOKOYA N,XIA J,et al. Comparison of machine learning methods for estimating mangrove above-ground biomass using multiple source remote sensing data in the Red River Delta Biosphere Reserve,Vietnam[J]. Remote Sensing,2020,12(8):1334-1334. doi: 10.3390/rs12081334

    CrossRef Google Scholar

    [23] HUANG Z M,TIAN Y C,ZHANG Q,et al. Estimating mangrove above-ground biomass at Maowei Sea,Beibu Gulf of China using machine learning algorithm with Sentinel-1 and Sentinel-2 data[J]. Geocarto International,2022,37:15778-15805. doi: 10.1080/10106049.2022.2102226

    CrossRef Google Scholar

    [24] 谭雨欣,田义超,黄卓梅,等. 北部湾茅尾海无瓣海桑红树林地上生物量反演:基于XGBoost机器学习算法[J]. 生态学报,2023,43(11):4674-4688.

    Google Scholar

    TAN Yuxin,TIAN Yichao,HUANG Zhuomei,et al. Aboveground biomass of Sonneratia apetala mangroves in Mawei Sea of Beibu Gulf based on XGBoost machine learning algorithm[J]. Acta Ecologica Sinica,2023,43(11):4674-4688.

    Google Scholar

    [25] 胡刚,黎洁,覃盈盈,等. 广西北仑河口红树植物种群结构与动态特征[J]. 生态学报,2018,38(9):3022-3034.

    Google Scholar

    HU Gang,LI Jie,QIN Yingying,et al. Population structure and dynamics of mangrove species in Beilun Estuary,Guangxi,southern China[J]. Acta Ecologica Sinica,2018,38(9):3022-3034.

    Google Scholar

    [26] 何琴飞,郑威,黄小荣,等. 广西钦州湾红树林碳储量与分配特征[J]. 中南林业科技大学学报,2017,37(11):121-126.

    Google Scholar

    HE Qinfei,ZHENG Wei,HUANG Xiaorong,et al. Carbon storage and distribution of mangroves at Qinzhou Bay[J]. Journal of Central South University of Forestry & Technology,2017,37(11):121-126.

    Google Scholar

    [27] FU W G,WU Y Y. Estimation of aboveground biomass of different mangrove trees based on canopy diameter and tree height[J]. Procedia Environmental Sciences,2011,10(C):2189-2194.

    Google Scholar

    [28] CLOUGH B F,SCOTT K. Allometric relationships for estimating aboveground biomass in six mangrove species[J]. Forest Ecology and Management,1989,27(2):117-127. doi: 10.1016/0378-1127(89)90034-0

    CrossRef Google Scholar

    [29] 叶子林,周普良,林辉,等. 纹理特征对森林蓄积量反演模型的影响[J]. 中南林业科技大学学报,2020,40(9):49-56.

    Google Scholar

    YE Zilin,ZHOU Puliang,LIN Hui,et al. Texture features influences on inversion model of forest stock volume[J]. Journal of Central South University of Forestry & Technology,2020,40(9):49-56.

    Google Scholar

    [30] ALONGI D M. Carbon cycling and storage in mangrove forests[J]. Annual Review of Marine Science,2014,6:195-219 doi: 10.1146/annurev-marine-010213-135020

    CrossRef Google Scholar

    [31] ZHAO P O,LU D S,WANG G X,et al. Examining spectral reflectance saturation in Landsat imagery and corresponding solutions to improve forest aboveground biomass estimation[J]. Remote Sensing,2016,8(6):469. doi: 10.3390/rs8060469

    CrossRef Google Scholar

    [32] LU D S. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon[J]. International Journal of Remote Sensing,2005,26(12):2509-2525. doi: 10.1080/01431160500142145

    CrossRef Google Scholar

    [33] KUPLICH M T,CURRAN J P,ATKINSON M P. Relating SAR image texture to the biomass of regenerating tropical forests[J]. International Journal of Remote Sensing,2011,26(21):4829-4854.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(5)

Article Metrics

Article views(130) PDF downloads(2) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint