2024 Vol. 40, No. 8
Article Contents

LI Ran, LI Hongyi, WANG Yaning, TANG Wu, ZHANG Shangfeng, ZHU Rui. Source-sink analysis based on dynamic provenance evolution: taking Lingshui Formation in Songnan area of Qiongdongnan Basin as an example[J]. Marine Geology Frontiers, 2024, 40(8): 12-21. doi: 10.16028/j.1009-2722.2024.052
Citation: LI Ran, LI Hongyi, WANG Yaning, TANG Wu, ZHANG Shangfeng, ZHU Rui. Source-sink analysis based on dynamic provenance evolution: taking Lingshui Formation in Songnan area of Qiongdongnan Basin as an example[J]. Marine Geology Frontiers, 2024, 40(8): 12-21. doi: 10.16028/j.1009-2722.2024.052

Source-sink analysis based on dynamic provenance evolution: taking Lingshui Formation in Songnan area of Qiongdongnan Basin as an example

More Information
  • Qiongdongnan Basin, a key oil-bearing basin in China, has been gradually expanded the exploration to the deep-water area. The Songnan area, an important provenance in the basin, has typical slope control characteristics in tectonic geomorphology, which is obviously different from the basin margin fault-control area. Due to the sea level fluctuation, the existence of early local provenance was often neglected during oil and gas exploration, which restricts the search for large-scale reservoir in the Songnan area. Based on the dynamic evolution of provenance, we found that two dynamic provenance systems, “dynamic multi-phase type” and “dynamic submergence type”, were mainly developed in the area. During the deposition period of Lingshui Formation (LF) (Oligocene), the effective material supply area of actual fan decreased, and the near-source fan delta deposition was formed in the low and high stages of the third member of LF and the low stage of the second member of LF. The latter had large-scale local provenance with well-developed fan delta sedimentary system in the lower area of the third member of LF. The dynamic provenance system in the Songnan area was influenced by the sea level fluctuation and paleo-geomorphology. The uplift area as a whole evolved from a material supply source forming fans in early period, to an underwater high as a dam in late period. Quantitative analysis on the source-sink components of the dynamic provenance system showed that the size of the source area, the depth of the channel, and their combination pattern were the main controlling factors of sand body formation in the dynamic provenance system in the Songnan area. Therefore, the large-scale provenance in low water level period, the strong downcut channel in the high and steep terrain, and the multiclass complex water system in a gentle terrain background are conducive to the large-scale fan development in the catchment of the study area.

  • 加载中
  • [1] 钟佳,杨希冰,朱沛苑,等. 琼东南盆地宝岛-长昌凹陷陵水组储层差异演化特征[J]. 地球科学,2019,44(8):2665-2676.

    Google Scholar

    [2] 吴克强,解习农,裴健翔,等. 超伸展陆缘盆地深部结构及油气勘探意义:以琼东南盆地为例[J]. 石油与天然气地质,2023,44(3):651-661. doi: 10.11743/ogg20230310

    CrossRef Google Scholar

    [3] 谢玉洪,张功成,唐武,等. 南海北部深水区油气成藏理论技术创新与勘探重大突破[J]. 天然气工业,2020,40(12):1-11. doi: 10.3787/j.issn.1000-0976.2020.12.001

    CrossRef Google Scholar

    [4] 张亚雄,朱筱敏,张功成,等. 中国南海琼东南盆地渐新统陵水组沉积特征[J]. 天然气地球科学,2013,24(5):956-964.

    Google Scholar

    [5] WANG D D,ZHANG G C,LI Z X,et al. The development characteristics and distribution predictions of the Paleogene coal-measure source rock in the Qiongdongnan Basin,northern South China Sea[J]. Acta Geologica Sinica(English Edition),2021,95(1):105-120. doi: 10.1111/1755-6724.14625

    CrossRef Google Scholar

    [6] 赖维成,宋章强,周心怀,等. “动态物源”控砂模式[J]. 石油勘探与开发,2010,37(6):763-768.

    Google Scholar

    [7] 李俞锋,蒲仁海,樊笑微,等. 琼东南盆地北礁凹陷上新统等深流影响的水道沉积体系[J]. 海洋学报,2022,44(10):80-89.

    Google Scholar

    [8] 蔡佳,王华. 琼东南盆地陵水组层序格架及沉积体系的时空配置关系[J]. 海洋石油,2011,31(1):16-21. doi: 10.3969/j.issn.1008-2336.2011.01.016

    CrossRef Google Scholar

    [9] 杨希冰,傅恒,何小胡,等. 琼东南盆地南部隆起带新生界沉积体系及其构造-沉积演化[J]. 沉积与特提斯地质,2019,39(3):1-10. doi: 10.3969/j.issn.1009-3850.2019.03.001

    CrossRef Google Scholar

    [10] 游君君,孙志鹏,李俊良,等. 琼东南盆地深水区松南低凸起勘探潜力评价[J]. 中国矿业,2012,21(8):56-59. doi: 10.3969/j.issn.1004-4051.2012.08.015

    CrossRef Google Scholar

    [11] 李建平,闫琢玉,徐微等. 琼东南盆地中央坳陷西北部梅山组浊积扇源-汇分析[J]. 中国海上油气,2023,35(3):53-67.

    Google Scholar

    [12] 陈欢庆,朱筱敏,张功成,等. 海相断陷盆地输导体系分类及组合模式特征:以琼东南盆地古近系陵水组为例[J]. 地学前缘,2021,28(1):282-294.

    Google Scholar

    [13] 汪锴. 琼东南盆地松南-宝岛凹陷的构造演化和古近纪原型恢复[D]. 北京:中国地质大学(北京),2021.

    Google Scholar

    [14] 周欣,曹俊兴,王兴建,等. 琼东南盆地深水区松南区块新生代构造-沉积演化特征研究[J]. 物探化探计算技术,2021,43(5):563-572. doi: 10.3969/j.issn.1001-1749.2021.05.04

    CrossRef Google Scholar

    [15] HUANG H T,HUANG B J,HUANG Y W,et al. Condensate origin and hydrocarbon accumulation mechanism of the deepwater giant gas field in western South China Sea:a case study of Lingshui 17-2 Gas Field in Qiongdongnan Basin[J]. Petroleum Exploration and Development Online,2017,44(3):380-388.

    Google Scholar

    [16] 龚赞. 琼东南盆地松南低凸起构造变形及其对油气成藏的影响[D]. 北京:中国石油大学(北京),2020.

    Google Scholar

    [17] 米立军,周守为,谢玉洪,等. 南海北部深水区油气勘探进展与未来展望[J]. 中国工程科学,2022,24(3):58-65.

    Google Scholar

    [18] CHEN H Q,ZHU X M,ZHANG G C,et al. Seismic facies in a deepwater area of a marine faulted basin:deepwater area of the Paleogene Lingshui Formation in the Qiongdongnan Basin[J]. Acta Geologica Sinica(English Edition),2012,86(2):473-483. doi: 10.1111/j.1755-6724.2012.00675.x

    CrossRef Google Scholar

    [19] 徐长贵,龚承林. 从层序地层走向源-汇系统的储层预测之路[J]. 石油与天然气地质,2023,44(3):521-538. doi: 10.11743/ogg20230301

    CrossRef Google Scholar

    [20] 周杰,杨希冰,杨金海,等. 琼东南盆地松南低凸起古近系构造-沉积演化特征与天然气成藏[J]. 地球科学,2019,44(8):2704-2716.

    Google Scholar

    [21] PRIZOMWALA S P,BHATT N,BASAVAIAH N. Provenance discrimination and source-to-sink studies from a dryland fluvial regime:an example from Kachchh,western India[J]. International Journal of Sediment Research,2014,29(1):99-109. doi: 10.1016/S1001-6279(14)60025-1

    CrossRef Google Scholar

    [22] LIU J T,HSU R T,HUNG J J,et al. From the highest to the deepest:the Gaoping River-Gaoping Submarine Canyon dispersal system[J]. Earth-Science Reviews,2016,153:274-300. doi: 10.1016/j.earscirev.2015.10.012

    CrossRef Google Scholar

    [23] 武爱俊,徐建永,滕彬彬,等. “动态物源”精细刻画方法与应用:以琼东南盆地崖南凹陷为例[J]. 岩性油气藏,2017,29(4):55-63.

    Google Scholar

    [24] GARZANTI E. From static to dynamic provenance analysis:sedimentary petrology upgraded[J]. Sedimentary Geology,2016,336:3-13. doi: 10.1016/j.sedgeo.2015.07.010

    CrossRef Google Scholar

    [25] SØMME T O,JACKSON C A L. Source-to-sink analysis of ancient sedimentary systems using a subsurface case study from the Møre-Trøndelag area of southern Norway:part 2-sediment dispersal and forcing mechanisms[J]. Basin Research,2013,25(5):512-531. doi: 10.1111/bre.12014

    CrossRef Google Scholar

    [26] SU M,HSIUNG K H,ZHANG C M,et al. The linkage between longitudinal sediment routing systems and basin types in the northern South China Sea in perspective of source-to-sin[J]. Journal of Asian Earth Sciences,2015,111:1-13. doi: 10.1016/j.jseaes.2015.05.011

    CrossRef Google Scholar

    [27] 马本俊,吴时国,米立军,等. 三维地震解释技术在南海北部陆缘深水水道体系中的应用[J]. 海洋地质与第四纪地质,2016,36(4):163-171.

    Google Scholar

    [28] CHEN S,JIANG D H,PU R H,et al. Genesis,evolution and reservoir identification of a Neogene submarine channel in the southwestern Qiongdongnan Basin,South China Sea[J]. Acta Oceanologica Sinica,2023,42(5):57-78. doi: 10.1007/s13131-022-2071-8

    CrossRef Google Scholar

    [29] 冉怀江,林畅松,朱筱敏,等. 南海北部新近系深水低位沉积特征及控制因素[J]. 特种油气藏,2015,22(3):46-50.

    Google Scholar

    [30] 刘强虎. 渤海湾盆地沙垒田凸起古近系“源-渠-汇”系统耦合研究[D]. 北京:中国石油大学(北京),2016.

    Google Scholar

    [31] 朱红涛,徐长贵,杜晓峰,等. 陆相盆地古源-汇系统定量重建、级次划分及耦合模式[J]. 石油与天然气地质,2023,44(3):539-552.

    Google Scholar

    [32] 李雨彤. 东濮凹陷南部沙河街组中段沉积体系研究[D]. 北京:中国石油大学(北京),2020.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(325) PDF downloads(38) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint