2024 Vol. 40, No. 12
Article Contents

JIN Long, LUAN Xiwu, XIAO Fei, JIANG Lushan, YIN Jian, WANG Zijie, WANG Jieyuan, YANG Xiao, MA Haozhe. Characterization and evolution of the Mergui Faults in the Tanintharyi Shelf, Andaman Sea Basin[J]. Marine Geology Frontiers, 2024, 40(12): 18-30. doi: 10.16028/j.1009-2722.2023.285
Citation: JIN Long, LUAN Xiwu, XIAO Fei, JIANG Lushan, YIN Jian, WANG Zijie, WANG Jieyuan, YANG Xiao, MA Haozhe. Characterization and evolution of the Mergui Faults in the Tanintharyi Shelf, Andaman Sea Basin[J]. Marine Geology Frontiers, 2024, 40(12): 18-30. doi: 10.16028/j.1009-2722.2023.285

Characterization and evolution of the Mergui Faults in the Tanintharyi Shelf, Andaman Sea Basin

More Information
  • Andaman Sea Basin is a back-arc spreading basin formed by pull-apart action, whose tectonic features and evolutionary mechanism in the eastern part of the basin are essential for understanding the evolution of the Andaman Sea Basin. The structural characteristics and evolution of the eastern part of the basin are of great significance for studying the evolution of the Andaman Sea Basin and the strike-slip faults formed by the oblique subduction of the plate. The stratigraphic structure and tectonic features in the eastern Andaman Sea Basin were analyzed based on 2D and 3D seismic data, and drilling and seismic profile data. The seismic stratigraphic sequences in the eastern Andaman Sea were established. Faults were finely sculpted using automatic 3D seismic layer pickup and seismic attributes. Two major fault zones were identified and named the East Mergui Fault and the West Mergui Fault. The evolution model of the fault zone was established based on the structural analysis. The evolution of the eastern Andaman fault zone could be divided into three phases: the strike-slip and strong extension stage in the Early Miocene, the extensional strike-slip stage in the Middle to Late Miocene, and the right-lateral strike-slip stage from the Pliocene to the present.

  • 加载中
  • [1] 夏义平,刘万辉,徐礼贵,等. 走滑断层的识别标志及其石油地质意义[J]. 中国石油勘探,2007,12(1):17-23,48,92.

    Google Scholar

    XIA Y P,LIU W H,XU G L,et al. Identification of strike-slip fault and its petroleum geology significance[J]. China Petroleum Exploration,2007,12(1):17-23,48,92.

    Google Scholar

    [2] PENG J S,WEI A J,SUN Z,et al. Sinistral strike slip of the Zhangjiakou-Penglai Fault and its control on hydrocarbon accumulation in the northeast of Shaleitian Bulge,Bohai Bay Basin,East China[J]. Petroleum Exploration and Development,2018,45(2):215-226. doi: 10.1016/S1876-3804(18)30025-9

    CrossRef Google Scholar

    [3] 许志琴,曾令森,杨经绥,等. 走滑断裂、“挤压性盆-山构造”与油气资源关系的探讨[J]. 地球科学,2004,29(6):631-643.

    Google Scholar

    XU Z Q,ZENG L S,YANG J S,et al. Role of large-scale strike-slip faults in the formation of petroleum-bearing compressional basin-mountain range systems [J]. Earth Science,29(6):631-643.

    Google Scholar

    [4] CAO S Y,FRANZ N. Deep crustal expressions of exhumed strike-slip fault systems:shear zone initiation on rheological boundaries[J]. Earth-Science Reviews,2016,162:155-176. doi: 10.1016/j.earscirev.2016.09.010

    CrossRef Google Scholar

    [5] 付小东,张本健,汪泽成,等. 四川盆地中西部走滑断裂及其对油气成藏控制作用 [J]. 地球科学,2023,48(6):2221-2237.

    Google Scholar

    FU X D,ZHANG B J,WANG Z C,et al. Strike-slip faults in central and western Sichuan Basin and their control functions on hydrocarbon accumulation [J]. Earth Science,2023,48(6):2221-2237.

    Google Scholar

    [6] 冯保周,于长录,何太洪,等. 鄂尔多斯盆地伊陕斜坡北部断裂体系的发现及地质意义[J]. 西安石油大学学报(自然科学版),2022,37(2):1-8.

    Google Scholar

    FENG B Z,YU C L,HE T H,et al. Discovery of fault system in the north of Yishan Slope in Ordos Basin and its geological significance[J]. Journal of Xi'an Shiyou University(Natural Science Edition),2022,37(2):1-8.

    Google Scholar

    [7] 冯志强,李萌,郭元岭,等. 中国典型大型走滑断裂及相关盆地成因研究[J]. 地学前缘,2022,29(6):206-223.

    Google Scholar

    FENG Z Q,LI M,GUO Y L,et al. Genetic analysis of typical strike-slip faults and related basins in China[J]. Earth Science Frontiers,2022,29(6):206-223.

    Google Scholar

    [8] 王建伟,鲍军,曹建军,等. 准噶尔盆地腹部两类走滑断裂带及其构造变形样式[J]. 地球科学,2022,47(9):3389-3400.

    Google Scholar

    WANG J W,BAO J,CAO J J,et al. Two types of strike-slip fault zones and their tectonic deformation patterns in the central Junggar Basin[J]. Earth Science,2022,47(9):3389-3400.

    Google Scholar

    [9] 张驰,储呈林,徐勤琪,等. 阿克库勒凸起东南斜坡走滑断裂构造特征及油气地质意义[J]. 地质学报,2024,98(2):481-493.

    Google Scholar

    ZHANG C,CHU C L,XU Q Q,et al. Tectonic characteristics of strike-slip faults in southeastern slope of Akkule Uplift in Tarim Basin,and its petroleum geological significance[J]. Acta Geologica Sinica,2024,98(2):481-493.

    Google Scholar

    [10] HUANG L,LIU C Y. Three types of flower structures in a divergent-wrench fault zone [J]. Journal of Geophysical Research:Solid Earth,2017,122(12):10478-10497.

    Google Scholar

    [11] HU Z W,XU C G,WANG D Y,et al. Superimposed characteristics and genetic mechanism of strike-slip faults in the Bohai Sea,China[J]. Petroleum Exploration and Development,2019,46(2):265-279. doi: 10.1016/S1876-3804(19)60007-8

    CrossRef Google Scholar

    [12] CURRAY J R. Tectonics and history of the Andaman Sea region[J]. Journal of Asian Earth Sciences,2005,25(1):187-232. doi: 10.1016/j.jseaes.2004.09.001

    CrossRef Google Scholar

    [13] SRIVASTAVA D K,DAVE A,DANGWAL V. Sequence stratigraphy of the Andaman Basin,northern Indian Ocean[J]. Marine and Petroleum Geology,2021,133:105298. doi: 10.1016/j.marpetgeo.2021.105298

    CrossRef Google Scholar

    [14] KAMESH R K A,ASWINI K K,YATHEESH V. Tectonics of the Andaman Backarc Basin:present understanding and some outstanding questions [M]//RAY J S,RADHAKRISHNA M. The Andaman Islands and Adjoining Offshore:Geology,Tectonics and Palaeoclimate. Cham: Springer International Publishing,2020:237-259.

    Google Scholar

    [15] SRISURIYON K,MORLEY C K. Pull-apart development at overlapping fault tips:oblique rifting of a Cenozoic continental margin,northern Mergui Basin,Andaman Sea[J]. Geosphere,2014,10(1):80-106. doi: 10.1130/GES00926.1

    CrossRef Google Scholar

    [16] MORLEY C K. Cenozoic structural evolution of the Andaman Sea:evolution from an extensional to a sheared margin[J]. Geological Society,London,Special Publications,2016,431(1):39-61. doi: 10.1144/SP431.1

    CrossRef Google Scholar

    [17] MAHATTANACHAI T,MORLEY C K,PUNYA C,et al. The Andaman Basin Central Fault Zone,Andaman Sea:characteristics of a major deepwater strike-slip fault system in a polyphase rift[J]. Marine and Petroleum Geology,2021,128:1-20.

    Google Scholar

    [18] ZHANG P,JIANG S Y,LI R Y,et al. Tectonic and climate forcing of exhumation in the SE Tibetan Plateau over the past 7 Ma:insights from the deltaic-submarine fan system in the Andaman Sea,northeastern Indian Ocean[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2023,620:111573.

    Google Scholar

    [19] THOMAS M,RANGIN C. Structure and kinematics of the Indo-Burmese Wedge:recent and fast growth of the outer wedge[J]. Tectonics,2009,28(2):150-170.

    Google Scholar

    [20] CHRISTOPHE V,SOCQUET A,RANGIN C,et al. Present-day crustal deformation around Sagaing Fault,Myanmar[J]. Journal of Geophysical Research:Solid Earth,2003,108(B11):001999.

    Google Scholar

    [21] MORLEY C K. Cenozoic rifting,passive margin development and strike-slip faulting in the Andaman Sea:a discussion of established v. new tectonic models [M]//BANDOPADHYAY P C,CARTER A. The Andaman–Nicobar Accretionary Ridge:Geology,Tectonics and Hazards. London:Geological Society of London Memoirs,2017,47(1):27-50.

    Google Scholar

    [22] RANGIN C,THOMAS M,FRÉDÉRIC M. Combined effects of Eurasia/Sunda oblique convergence and East-Tibetan crustal flow on the active tectonics of Burma[J]. Journal of Asian Earth Sciences,2013,76:185-194. doi: 10.1016/j.jseaes.2013.05.018

    CrossRef Google Scholar

    [23] ZHANG P,MEI L F,HU X L,et al. Structures,uplift,and magmatism of the Western Myanmar Arc:constraints to Mid-Cretaceous-Paleogene tectonic evolution of the western Myanmar continental margin[J]. Gondwana Research,2017,52:18-38. doi: 10.1016/j.gr.2017.09.002

    CrossRef Google Scholar

    [24] ZHANG P,MEI L F,JIANG S Y,et al. Erosion and sedimentation in SE Tibet and Myanmar during the evolution of the Burmese continental margin from the Late Cretaceous to Early Neogene[J]. Gondwana Research,2021,95:149-175. doi: 10.1016/j.gr.2021.04.005

    CrossRef Google Scholar

    [25] GUILLAUME B,RANGIN C,MALUSKI H,et al. Diachronous cooling along the Mogok Metamorphic Belt (Shan Scarp,Myanmar):the trace of the northward migration of the Indian Syntaxis[J]. Journal of Asian Earth Sciences,2001,19(5):649-659. doi: 10.1016/S1367-9120(00)00061-4

    CrossRef Google Scholar

    [26] MORLEY C K. Discussion of tectonic models for Cenozoic strike-slip fault-affected continental margins of mainland SE Asia[J]. Journal of Asian Earth Sciences,2013,76:137-151. doi: 10.1016/j.jseaes.2012.10.019

    CrossRef Google Scholar

    [27] MORLEY C K. Syn-kinematic sedimentation at a releasing splay in the northern Minwun Ranges,Sagaing Fault Zone,Myanmar:significance for fault timing and displacement[J]. Basin Research,2017,29(S1):684-700. doi: 10.1111/bre.12201

    CrossRef Google Scholar

    [28] RACEY A,RIDD M F. Petroleum geology of the Moattama Region,Myanmar [M]//RACEY A,RIDD M F. Petroleum Geology of Myanmar. London :Geological. Society of London Memoirs,2015,45(1):63-81.

    Google Scholar

    [29] MORLEY C K. The widespread occurrence of low-angle normal faults in a rift setting:review of examples from Thailand,and implications for their origin and evolution[J]. Earth-Science Reviews,2014,133:18-42. doi: 10.1016/j.earscirev.2014.02.007

    CrossRef Google Scholar

    [30] MORLEY C K,WANG Y. The Cenozoic hyper-oblique collision zone of Indochina:a reappraisal of escape tectonics[J]. Earth-Science Reviews,2023,243:104453. doi: 10.1016/j.earscirev.2023.104453

    CrossRef Google Scholar

    [31] NAJMAN Y,SOBEL E R,MILLAR I,et al. The timing of collision between Asia and the West Burma Terrane,and the development of the Indo-Burman Ranges[J]. Tectonics,2022,41(7):e2021TC007057. doi: 10.1029/2021TC007057

    CrossRef Google Scholar

    [32] MOEREMANS R E,SINGH S C. Fore-arc basin deformation in the Andaman-Nicobar segment of the Sumatra-Andaman subduction zone:insight from high-resolution seismic reflection data[J]. Tectonics,2015,34(8):1736-1750. doi: 10.1002/2015TC003901

    CrossRef Google Scholar

    [33] MORLEY C K,CHANTRAPRASERT S,KONGCHUM J,et al. The West Burma Terrane,a review of recent paleo-latitude data,its geological implications and constraints[J]. Earth-Science Reviews,2021,220:103722. doi: 10.1016/j.earscirev.2021.103722

    CrossRef Google Scholar

    [34] MORLEY C K,CHANTRAPRASERT S,KONGCHUM J,et al. Interaction of thin-skinned detached faults and basement-involved strike-slip faults on a transform margin:the Moattama Basin,Myanmar [M]//NEMČOK M,DORAN H,DORÉ A G,et al. Tectonic Development,Thermal History and Hydrocarbon Habitat Models of Transform Margins:Their Differences from Rifted Margins. London:Geological Society of London,2023,524(1):SP524-2021-2090.

    Google Scholar

    [35] KAMESH R K A,RAMPRASAD T,RAO P S,et al. New insights into the tectonic evolution of the Andaman Basin,northeast Indian Ocean[J]. Earth and Planetary Science Letters,2004,221(1):145-162.

    Google Scholar

    [36] JOURDAIN A,SINGH S C,ESCARTIN J,et al. Crustal accretion at a sedimented spreading center in the Andaman Sea[J]. Geology,2016,44(5):351-354. doi: 10.1130/G37537.1

    CrossRef Google Scholar

    [37] VICTORIEN P,ZUCKMEYER E,BOICHARD R,et al. Evolution of Late Oligocene-Early Miocene attached and isolated carbonate platforms in a volcanic ridge context (Maldives type),Yadana field,offshore Myanmar[J]. Marine and Petroleum Geology,2017,81:361-387. doi: 10.1016/j.marpetgeo.2016.12.012

    CrossRef Google Scholar

    [38] TEILLET T,FRANÇOIS F,LUCIEN F M,et al. Development patterns of an isolated oligo-mesophotic carbonate buildup,Early Miocene,Yadana Field,offshore Myanmar[J]. Marine and Petroleum Geology,2020,111:440-460. doi: 10.1016/j.marpetgeo.2019.08.039

    CrossRef Google Scholar

    [39] TEILLET T,FOURNIER F,GISQUET F,et al. Diagenetic history and porosity evolution of an Early Miocene carbonate buildup (Upper Burman Limestone),Yadana Gas Field,offshore Myanmar[J]. Marine and Petroleum Geology,2019,109:589-606. doi: 10.1016/j.marpetgeo.2019.06.044

    CrossRef Google Scholar

    [40] RACEY A,RIDD M F. Chapter 8: Petroleum geology of the Tanintharyi Region,Myanmar [M]. Petroleum Geology of Myanmar. London :Geological. Society of London Memoirs,2015,45(1):83-91.

    Google Scholar

    [41] GUO M,LUAN X W,ZHANG H X,et al. Geometric and kinematic analysis of faults bordering the Andaman Sea continental shelves:a 3D seismic case study[J]. Frontiers in Earth Science,2023,11:1247665. doi: 10.3389/feart.2023.1247665

    CrossRef Google Scholar

    [42] QIAO J H,LUAN X W,THANUJA D R,et al. Unravelling Cenozoic carbonate platform fluid expulsion:deciphering pockmark morphologies and genesis in the Tanintharyi Shelf of the Andaman Sea as promising hydrocarbon reservoirs[J]. Marine and Petroleum Geology,2024,160:106603. doi: 10.1016/j.marpetgeo.2023.106603

    CrossRef Google Scholar

    [43] LU Y T,SHI B Q,LUAN X W,et al. Fine-grained deep-water turbidite gas reservoirs in upper Bengal Fan[J]. Marine and Petroleum Geology,2023,158:106547. doi: 10.1016/j.marpetgeo.2023.106547

    CrossRef Google Scholar

    [44] LU Y,RAN W,XU X,et al. Linear polygonal faults initiated Gully system around the margin slope of Middle Miocene carbonate platform in the northwest South China sea[J]. Marine and Petroleum Geology,2023,147:106022. doi: 10.1016/j.marpetgeo.2022.106022

    CrossRef Google Scholar

    [45] POLACHAN S,RACEY A. Stratigraphy of the Mergui Basin,Andaman Sea:implications for petroleum exploration[J]. Journal of Petroleum Geology,1994,17(4):373-406. doi: 10.1111/j.1747-5457.1994.tb00147.x

    CrossRef Google Scholar

    [46] LIU J P,STEVEN A K,PIERCE A C,et al. Fate of Ayeyarwady and Thanlwin Rivers sediments in the Andaman Sea and Bay of Bengal[J]. Marine Geology,2020,423:106137. doi: 10.1016/j.margeo.2020.106137

    CrossRef Google Scholar

    [47] MORLEY C K,BANDOPADHYAY P C,CARTER A. Cenozoic rifting,passive margin development and strike-slip faulting in the Andaman Sea:a discussion of established v. new tectonic models [M]//The Andaman–Nicobar Accretionary Ridge:Geology,Tectonics and Hazards. London: Geological Society of London,2017,47(1):27-50.

    Google Scholar

    [48] LUNT P. Partitioned transtensional Cenozoic stratigraphic development of North Sumatra[J]. Marine and Petroleum Geology,2019,106:1-16. doi: 10.1016/j.marpetgeo.2019.04.031

    CrossRef Google Scholar

    [49] MORLEY C K,MIKE S. Regional tectonics,structure and evolution of the Andaman–Nicobar Islands from ophiolite formation and obduction to collision and back-arc spreading [M]//BANDOPADHYAY P C,CARTER A. The Andaman-Nicobar Accretionary Ridge:Geology,Tectonics and Hazards. London:Geological Society London Memoirs,2017,47(1):51-74.

    Google Scholar

    [50] RANGIN C,BARBER A J,ZAW K,et al. Active and recent tectonics of the Burma Platelet in Myanmar [M]//Myanmar:Geology,Resources and Tectonics. London:Geological Society of London,2017,48(1):53-64.

    Google Scholar

    [51] MORLEY C K,ALVEY A. Is spreading prolonged,episodic or incipient in the Andaman Sea? Evidence from deepwater sedimentation[J]. Journal of Asian Earth Sciences,2015,98:446-456. doi: 10.1016/j.jseaes.2014.11.033

    CrossRef Google Scholar

    [52] BANDOPADHYAY P C,CARTER A. The Andaman–Nicobar Accretionary Ridge:Geology,Tectonics and Hazards [M]. London:Geological Society of London,2017,47(1):75-93.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(46) PDF downloads(7) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint