2024 Vol. 40, No. 9
Article Contents

TONG Siyou, YANG Linhan, ZHENG Jingjia, XU Xiugang. Research on high-precision detection technology for micro targets in shallow seabed of shallow sea[J]. Marine Geology Frontiers, 2024, 40(9): 84-95. doi: 10.16028/j.1009-2722.2023.193
Citation: TONG Siyou, YANG Linhan, ZHENG Jingjia, XU Xiugang. Research on high-precision detection technology for micro targets in shallow seabed of shallow sea[J]. Marine Geology Frontiers, 2024, 40(9): 84-95. doi: 10.16028/j.1009-2722.2023.193

Research on high-precision detection technology for micro targets in shallow seabed of shallow sea

More Information
  • Due to small in size and shallow in burial depth, micro targets at shallow seabed are generally hard to detect precisely by available underwater acoustic detection methods. By applying seismic acoustic numerical simulation, we achieved high-precision detection of small targets at a shallow seabed by multi-channel seismic acoustic detection. First, the high-order staggered grid finite difference method based on wave theory was used to realize the forward modeling of small targets, to explore the seismic acoustic propagation response characteristics of shallow sea micro targets under different main frequencies, different seabed morphologies, and different burial conditions, and to summarize the propagation laws of small targets under different conditions. Furthermore, the reverse time migration technology with higher imaging accuracy was applied, from which high-precision imaging of the position and morphology of small targets was realized. The trial results of different shallow water micro targets models show that the multi-channel seismic acoustic detection method achieved high-precision detection of micro target objects at shallow water with accurate imaging positioning and good shape characterization.

  • 加载中
  • [1] 杨益新,韩一娜,赵瑞琴,等. 海洋声学目标探测技术研究现状和发展趋势[J]. 水下无人系统学报,2018,26(5):369-386,367.

    Google Scholar

    YANG Yixin,HAN Yi’na,ZHAO Ruiqin,et al. Ocean acoustic target detection technologies:a review[J]. Journal of Unmanned Undersea Systems,2018,26(5):369-386,367.

    Google Scholar

    [2] 常婉宣. 美国开发新型反水雷无人声呐系统[J]. 水雷战与舰船防护,2013,21(4):72-74.

    Google Scholar

    CHANG Wanxuan. Countering mine threat with new drone sonar system[J]. Mine Warfare & Ship Self-Defence,2013,21(4):72-74.

    Google Scholar

    [3] ALTERMAN Z,KARAL F C. Propagation of elastic waves in layered media by finite-difference methods[J]. Bulletin of the Seismological Society of America,1968,58:367-398.

    Google Scholar

    [4] DABLAIN M A. The application of high-order differencing to the scalar wave equation[J]. Geophysics,1986,51(1):54-66. doi: 10.1190/1.1442040

    CrossRef Google Scholar

    [5] 董良国,马在田,曹景忠. 一阶弹性波方程交错网格高阶差分解法稳定性研究[J]. 地球物理学报,2000,43(6):856-864. doi: 10.3321/j.issn:0001-5733.2000.06.015

    CrossRef Google Scholar

    DONG Liangguo,MA Zaitian,CAO Jingzhong. A study on stability of the staggered-grid high-order difference method of first-order elastic wave equation[J]. Chinese Journal of Geophysics,2000,43(6):856-864. doi: 10.3321/j.issn:0001-5733.2000.06.015

    CrossRef Google Scholar

    [6] 刘庆敏. 高阶差分数值模拟方法研究[D]. 青岛:中国石油大学(华东),2007.

    Google Scholar

    LIU Qingmin. Method study of high order finite difference numerical modelling[D]. Qingdao:China University of Petroleum (East China),2007.

    Google Scholar

    [7] WHITMORE D W. Iterative depth migration by backward time propagation[C]. 53rd Annual International Meeting,SEG,Expanded Abstracts,1983:382-385.

    Google Scholar

    [8] LOEWENTHAL D,MULFTI I R. Reverse-time migration in spatial frequency domain[J]. Geophysics,1983,46:627-635.

    Google Scholar

    [9] 陈可洋. 标量声波波动方程高阶交错网格有限差分法[J]. 中国海上油气,2009,21(4):232-236. doi: 10.3969/j.issn.1673-1506.2009.04.004

    CrossRef Google Scholar

    CHEN Keyang. High-order staggered-grid finite difference scheme for scalar acoustic wave equation[J]. China Offshore Oil and Gas,2009,21(4):232-236. doi: 10.3969/j.issn.1673-1506.2009.04.004

    CrossRef Google Scholar

    [10] 王保利,高静怀,陈文超,等. 地震叠前逆时偏移的有效边界存储策略[J]. 地球物理学报,2012,55(7):2412-2421. doi: 10.6038/j.issn.0001-5733.2012.07.025

    CrossRef Google Scholar

    WANG Baoli,GAO Jinghuai,CHEN Wenchao,et al. Efficient boundary storage strategies for seismic reverse time migration[J]. Chinese Journal of Geophysics,2012,55(7):2412-2421. doi: 10.6038/j.issn.0001-5733.2012.07.025

    CrossRef Google Scholar

    [11] 方刚,FOMEL Sergey,杜启振. 交错网格Lowrank有限差分及其在逆时偏移中的应用[J]. 中国石油大学学报(自然科学版),2014,38(2):44-51.

    Google Scholar

    FANG Gang,FOMEL Sergey,DU Qizhen. Lowrank finite difference on a staggered grid and its application on reverse time migration[J]. Journal of China University of Petroleum,2014,38(2):44-51.

    Google Scholar

    [12] 王绍文,宋鹏,谭军,等. 基于QHAdam梯度优化算法的最小二乘逆时偏移[J]. 地球物理学报,2022,65(7):2673-2680. doi: 10.6038/cjg2022P0364

    CrossRef Google Scholar

    WANG Shaowen,SONG Peng,TAN Jun,et al. The least-squares reverse time migration with gradient optimization based on QHAdam[J]. Chinese Journal of Geophysics,2022,65(7):2673-2680. doi: 10.6038/cjg2022P0364

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(19)

Article Metrics

Article views(242) PDF downloads(80) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint