2024 Vol. 40, No. 10
Article Contents

XUE Guoqing, LI Da, CHENG Linyan, PENG Xuan, FU Qiang, LI Ningtao. Simulation of sedimentary filling process of confined and unconfined canyons: taking the Area M of Qiongdongnan Basin as an example[J]. Marine Geology Frontiers, 2024, 40(10): 85-96. doi: 10.16028/j.1009-2722.2023.188
Citation: XUE Guoqing, LI Da, CHENG Linyan, PENG Xuan, FU Qiang, LI Ningtao. Simulation of sedimentary filling process of confined and unconfined canyons: taking the Area M of Qiongdongnan Basin as an example[J]. Marine Geology Frontiers, 2024, 40(10): 85-96. doi: 10.16028/j.1009-2722.2023.188

Simulation of sedimentary filling process of confined and unconfined canyons: taking the Area M of Qiongdongnan Basin as an example

  • The changes in the sand-mud ratio and sediment-filling rate in underwater canyon directly affect the geomorphic characteristics of the canyon. Taking the Central Canyon in the Area M of the Qiongdongnan Basin as an example, based on 1 000 km2 of three-dimensional seismic data, the canyon types formed in seven periods in the area were recognized and classified. Software Fluent was used to simulate the characteristics of the filling process under the conditions of different sand-mud ratios in single- and dual-sourced scenarios. Results show that the canyons that formed in the early stage (T50-T30) are confined canyons, and the those formed in the late stage (T29_1-T29) are unconfined canyons. The channels developed in the confined canyons have strong meandering ability, the superposition of multi-stage channels is obvious, and channel complexes are mostly developed; however, in the unconfined canyons, channels developed are mainly transversely migrated, and then slowly diffused into an open area and formed lobe complexes. The simulation and study of the canyon-filling processes increased the accuracy of identification of sedimentary units in the canyons, and provided a theoretical basis for the efficiency and the optimization of exploration target areas.

  • 加载中
  • [1] HARRIS P T,WHITEWAY T. Global distribution of large submarine canyons:geomorphic differences between active and passive continental margins[J]. Marine Geology,2011,285(1/4):69-86.

    Google Scholar

    [2] FILDANI A. Submarine canyons:a brief review looking forward[J]. Geology,2017,45(4):383-384. doi: 10.1130/focus042017.1

    CrossRef Google Scholar

    [3] CAMPION K M,SPRAGUE A R,MOHRIG D,et al. Outcrop expression of confined channel complexes[J]. AAPG Bulletin,2003,44(4):13-37.

    Google Scholar

    [4] CLARK J D,PICKERING K T. Submarine Channels:Processes and Architecture[M]. London:Vallis Press,1996:1-231.

    Google Scholar

    [5] DEOTUCK M E,STEFFENS G S,BARTON M,et al. Architecture and evolution of upper fan channel-belts on the Niger Delta slope and in the Arabian Sea[J]. Marine and Petroleum Geology,2003,20(6/8):649-676.

    Google Scholar

    [6] HUBBARD S M,DE R M J,GRAHAM S A. Confined channel-levee complex development in an elongate depo-center:deep-water Tertiary strata of the Austrian Molasse Basin[J]. Marine and Petroleum Geology,2009,26(1):85-112. doi: 10.1016/j.marpetgeo.2007.11.006

    CrossRef Google Scholar

    [7] 赵晓明,吴胜和,刘丽. 西非陆坡区深水复合水道沉积构型模式[J]. 中国石油大学学报(自然科学版),2012,36(6):1-5.

    Google Scholar

    ZHAO Xiaoming,WU Shenghe,LIU Li. Sedimentary architecture model of deep-water composite channels in the West African continental slope[J]. Journal of China University of Petroleum (Natural Science Edition),2012,36(6):1-5.

    Google Scholar

    [8] MOODY J D,PYLES D R,CLARK J,et al. Quantitative outcrop characterization of an analog to weakly confined submarine channel systems:Morillo 1 Member,Ainsa Basin,Spain[J]. AAPG Bulletin,2012,96(10):1813-1841. doi: 10.1306/01061211072

    CrossRef Google Scholar

    [9] 林煜,吴胜和,王星,等. 深水浊积水道体系构型模式研究:以西非尼日尔三角洲盆地某深水研究区为例[J]. 地质论评,2013,59(3):510-520. doi: 10.3969/j.issn.0371-5736.2013.03.011

    CrossRef Google Scholar

    LIN Yu,WU Shenghe,WANG Xing,et al. Research on the configuration model of deep-water turbidite channel system: taking a deep-water research area in the Niger Delta Basin in West Africa as an example[J]. Geological Review,2013,59(3):510-520. doi: 10.3969/j.issn.0371-5736.2013.03.011

    CrossRef Google Scholar

    [10] 孙辉,姜涛,李春峰,等. 日本南海海槽斜坡盆地重力流沉积特征及其对俯冲构造的响应[J]. 地球科学(中国地质大学学报),2014,39(10):1383-1394.

    Google Scholar

    SUN Hui,JIANG Tao,LI Chunfeng,et al. Sedimentary characteristics of gravity flow in the slope basin of the South China Sea Trough in Japan and its response to subduction structure[J]. Earth Science (Journal of China University of Geosciences),2014,39(10):1383-1394.

    Google Scholar

    [11] 陈慧,解习农,毛凯楠. 南海北缘一统暗沙附近深水等深流沉积体系特征[J]. 地球科学(中国地质大学学报),2015,40(4):733-743. doi: 10.3799/dqkx.2015.061

    CrossRef Google Scholar

    CHEN Hui,XIE Xinong,MAO Kainan. Characteristics of the deep-water contour current sedimentary system near the dark sand of the northern margin of the South China Sea[J]. Earth Science (Journal of China University of Geosciences),2015,40(4):733-743. doi: 10.3799/dqkx.2015.061

    CrossRef Google Scholar

    [12] 张文彪,段太忠,刘志强,等. 深水浊积水道沉积构型模式及沉积演化:以西非M油田为例[J]. 地球科学,2017,42(2):273-285.

    Google Scholar

    ZHANG Wenbiao,DUAN Taizhong,LIU Zhiqiang,et al. Sedimentary architecture model and sedimentary evolution of deep-water turbidite channels:a case study of the M Oilfield in West Africa[J]. Earth Science,2017,42(2):273-285.

    Google Scholar

    [13] 谈明轩,吴峰,马皓然,等. 海底扇沉积相模式、沉积过程及其沉积记录的指示意义[J]. 沉积学报,2022,40(2):435-449.

    Google Scholar

    TAN Mingxuan,WU Feng,MA Haoran,et al. Sedimentary facies models,sedimentary processes and their implications for sedimentary records of submarine fans[J]. Acta Sedimentum Sinica,2022,40(2):435-449.

    Google Scholar

    [14] 赵晓明,刘丽,谭程鹏,等. 海底水道体系沉积构型样式及控制因素:以尼日尔三角洲盆地陆坡区为例[J]. 古地理学报,2018,20(5):825-840. doi: 10.7605/gdlxb.2018.05.058

    CrossRef Google Scholar

    ZHAO Xiaoming,LIU Li,TAN Chengpeng,et al. Sedimentary architecture patterns and controlling factors of the submarine channel system:a case study of the continental slope of the Niger Delta Basin[J]. Acta Paleogeography,2018,20(5):825-840. doi: 10.7605/gdlxb.2018.05.058

    CrossRef Google Scholar

    [15] LINK M H,WEIMER P. Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems:an Overview[M]. New York:Springer,1991:3-7.

    Google Scholar

    [16] 汪新光,张辉,陈之贺,等. 琼东南盆地陵水区中央峡谷水道沉积数值模拟[J]. 地质科技通报,2021,40(5):42-53.

    Google Scholar

    WANG Xinguang,ZHANG Hui,CHEN Zhihe,et al. Numerical simulation of sedimentation in the central canyon waterway of Lingshui District,Qiongdongnan Basin[J]. Geological Science and Technology Bulletin,2021,40(5):42-53.

    Google Scholar

    [17] 康丽芳,左倩媚,王振国,等. 琼东南盆地新近系莺二段物源体系及其控制下的深水重力流沉积[J]. 海洋学报,2021,43(3):62-75.

    Google Scholar

    KANG Lifang,ZUO Qianmei,WANG Zhenguo,et al. The source system of the Neogene Ying-2 Member in the Qiongdongnan Basin and its controlled deep-sea gravity flow sedimentation[J]. Journal of Oceanography,2021,43(3):62-75.

    Google Scholar

    [18] 田冬梅. 南海西北部晚中新世深水水道沉积水动力学模拟[D]. 武汉:中国地质大学(武汉),2022.

    Google Scholar

    TIAN Dongmei. Dynamic simulation of sedimentation and water accumulation in Late Miocene deep water channels in the northwest South China Sea[D]. Wuhan:China University of Geosciences(Wuhan),2022.

    Google Scholar

    [19] 张鹏. 南海北部新近系陆架-陆坡演化及沉积体系研究[D]. 西安:西安石油大学,2020.

    Google Scholar

    ZHANG Peng. A study on the evolution and sedimentary system of the Neogene shelf slope in the northern South China Sea[D]. Xi'an:Xi'an Shiyou University, 2020.

    Google Scholar

    [20] 梁超. 琼东南盆地中央峡谷乐东-宝岛段充填结构及储层差异性[D]. 武汉:中国地质大学,2020.

    Google Scholar

    LIANG Chao. Filling structure and reservoir differences in the Ledong-Baodao section of the Central Canyon in the Qiongdongnan Basin[D]. Wuhan:China University of Geosciences,2020.

    Google Scholar

    [21] 张贺举,高弘毅,程宝庆,等. 南海北部琼东南盆地大中型气田天然气运聚成藏特征对比及启示[J]. 广东石油化工学院学报,2023,33(3):7-12. doi: 10.3969/j.issn.2095-2562.2023.03.003

    CrossRef Google Scholar

    ZHANG Heju,GAO Hongyi,Cheng Baoqing,et al. Comparison and inspiration of natural gas migration and accumulation characteristics in large and medium-sized gas fields in the Qiongdongnan Basin,northern South China Sea[J]. Journal of Guangdong Institute of Petroleum and Chemical Technology,2023,33(3):7-12. doi: 10.3969/j.issn.2095-2562.2023.03.003

    CrossRef Google Scholar

    [22] LEI C,ALVES T M,REN J,et al. Rift structure and sediment infill of hyperextended continental crust:insights from 3D seismic and well data (Xisha Trough,South China Sea)[J]. Journal of Geophysical Research:Solid Earth,2020,125(5):e2019JB-018610.

    Google Scholar

    [23] 张鹏,邹韵,杨志鹏,等. 莺歌海盆地东方区黄流组沉积单元[J]. 海洋地质前沿,2019,35(11):7-13.

    Google Scholar

    ZHANG Peng,ZOU Yun,YANG Zhipeng,et al. Sedimentary unit of the Huangliu Formation in the Dongfang area of the Yinggehai Basin[J]. Frontiers of Marine Geology,2019,35(11):7-13.

    Google Scholar

    [24] 付志方,宫越,苏玉山,等. 被动陆缘深水海底限制性水道三维地震表征及沉积演化:以纳米贝盆地为例[J]. 沉积学报,2024,42(1):1-12.

    Google Scholar

    FU Zhifang,GONG Yue,SU Yushan,et al. 3D seismic characterization and sedimentary evolution of passive marginal deepwater submarine restricted channels: a case study of the Namibe Basin[J]. Acta Sedimentum Sinica,2024,42(1):1-12.

    Google Scholar

    [25] 姚悦,周江羽,雷振宇,等. 西沙海槽盆地强限制性中央峡谷水道地震相与内部结构的分段特征[J]. 沉积学报,2018,36(4):787-795.

    Google Scholar

    YAO Yue,ZHOU Jiangyu,LEI Zhenyu,et al. Seismic facies and segmental characteristics of the internal structure of the strongly restricted central canyon channel in the Xisha Trough Basin[J]. Acta Sedimentum Sinica,2018,36(4):787-795.

    Google Scholar

    [26] 冯潇飞. 深海水道沉积构型模式及其内部砂体展布研究[D]. 成都:西南石油大学,2020.

    Google Scholar

    FENG Xiaofei. Study on the sedimentary architecture model of deep sea channel and its internal sand body distribution[D]. Chengdu:Southwest Petroleum University,2020.

    Google Scholar

    [27] 李磊. 被动陆缘深水扇沉积构型及主控因素分析:以珠江口盆地和尼日尔三角洲盆地为例[M]. 北京:石油工业出版社,2012.

    Google Scholar

    LI Lei. Sedimentary Configuration and Main Controlling Factors of Deep-Water Fan in Passive Continental Margin:Taking the Pearl River Mouth Basin and Niger Delta Basin as Examples[M]. Beijing:Petroleum Industry Press,2012.

    Google Scholar

    [28] 李磊,李彬,王英民,等. 块体搬运沉积体系地震地貌及沉积构型:以珠江口盆地和尼日尔三角洲盆地为例[J]. 中南大学学报(自然科学版),2013,44(6):2410-2416.

    Google Scholar

    LI Lei,LI Bin,WANG Yingmin,et al. Seismic geomorphology and sedimentary architecture of block transport sedimentary system:taking the Pearl River Mouth Basin and Niger Delta Basin as examples[J]. Journal of Central South University (Natural Science Edition),2013,44(6):2410-2416.

    Google Scholar

    [29] 刘子玉,谢晓军,李建平,等. 被动大陆边缘背景下典型深水沉积模式探讨[J]. 中国海上油气,2021,33(6):87-93. doi: 10.11935/j.issn.1673-1506.2021.06.010

    CrossRef Google Scholar

    LIU Ziyu,XIE Xiaojun,LI Jianping,et al. Discussion on typical deep-water sedimentary models in the background of passive continental margin[J]. China offshore oil and gas,2021,33(6):87-93. doi: 10.11935/j.issn.1673-1506.2021.06.010

    CrossRef Google Scholar

    [30] 李华,何幼斌,王振奇. 深水高弯度水道:堤岸沉积体系形态及特征[J]. 古地理学报,2011,13(2):139-149. doi: 10.7605/gdlxb.2011.02.002

    CrossRef Google Scholar

    LI Hua,HE Youbin,WANG Zhenqi. Morphology and characteristics of deep-water high-curvature channel-bank sedimentary system[J]. Acta Paleogeography,2011,13(2):139-149. doi: 10.7605/gdlxb.2011.02.002

    CrossRef Google Scholar

    [31] 朱一杰,夏瑞,郑云柯,等. 干旱条件下冲积扇的沉积构型和演化过程:基于水槽模拟实验[J]. 古地理学报,2020,22(6):1081-1094. doi: 10.7605/gdlxb.2020.06.073

    CrossRef Google Scholar

    ZHU Yijie,XIA Rui,ZHEN Yunke,et al. Sedimentary architecture and evolution of alluvial fans under drought conditions:based on flume simulation experiments[J]. Acta Paleogeography,2020,22(6):1081-1094. doi: 10.7605/gdlxb.2020.06.073

    CrossRef Google Scholar

    [32] 陈昱瑶,周江羽,钟佳,等. 南海西北缘深水水道体系的地震响应及其演化[J]. 海洋地质与第四纪地质,2014,34(2):69-78.

    Google Scholar

    CHEN Yuyao,ZHOU Jiangyu,ZHONG Jia,et al. Seismic response and evolution of the deepwater channel system in the northwestern margin of the South China Sea[J]. Marine Geology and Quaternary Geology,2014,34(2):69-78.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(3)

Article Metrics

Article views(135) PDF downloads(15) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint