2024 Vol. 40, No. 6
Article Contents

HU Gaowei, LIU Xiantong, CHEN Yang, QIU Longwei, LI Yanli. Comprehensive identification of sediment source in the First Member of Huangliu Formation in Yinggehai Basin[J]. Marine Geology Frontiers, 2024, 40(6): 62-74. doi: 10.16028/j.1009-2722.2023.071
Citation: HU Gaowei, LIU Xiantong, CHEN Yang, QIU Longwei, LI Yanli. Comprehensive identification of sediment source in the First Member of Huangliu Formation in Yinggehai Basin[J]. Marine Geology Frontiers, 2024, 40(6): 62-74. doi: 10.16028/j.1009-2722.2023.071

Comprehensive identification of sediment source in the First Member of Huangliu Formation in Yinggehai Basin

More Information
  • The characteristics of heavy mineral assemblages from each sediment provenance of the Huangliu Formation in the Yinggehai Basin were determined in intuitive comparison method, from which the characteristics of ancient parent rockswere clarified. There are three main provenances around the research area, namely Hainan Island, northern Vietnam (Red River), and central Vietnam. Results indicate that the provenances from Vietnam are mainly composed of sedimentary rock typed iron and titanium minerals, and other sedimentary rock typed ones alike, while the Hainan provenance is mainly composed of acidic volcanic rock typed heavy mineral assemblages including zircon, tourmaline, and rutile. The spectral clustering results based on cosine distance and Pearson correlation coefficient show that zircon, tourmaline, rutile, anatase, and perovskite in the Huangliu Formation are less affected by diagenesis and thus are stable minerals . The dominant source areas were divided using complex topological networks of stable heavy minerals, seismic attributes, seismic profiles, and zircon ages. It was determined that some fan bodies in the Dongfang 13 and 1 areas of the Yinggehai Basin were controlled mostly by the northern Vietnam (Red River) provenance, while the vast majority of fans in the Dongfang 13 and 29 areas were affected jointly by the central Vietnam and northern Hainan provenances. The Ledong area was controlled by the southern Hainan source. Therefore, a comprehensive method to determine provenance was established combining heavy mineral assemblage, seismic attribute, and zircon chronology.

  • 加载中
  • [1] 田豹,李维锋,祁腾飞,等. 重矿物物源分析研究进展[J]. 中国锰业,2017,35(1):107-109,115.

    Google Scholar

    [2] ROSER B P,KORSCH R J. Provenance signatures of sandstone-mudstone suites determined usingdiscriminant function analysis of major element data[J]. Chemical Geology,1988,67(1/2):119-139.

    Google Scholar

    [3] 徐杰,姜在兴. 碎屑岩物源研究进展与展望[J]. 古地理学报,2019,21(3):379-396.

    Google Scholar

    [4] EYNATTEN V,DUNKL H I. Assessing the sediment factory:The role of single grain analysis[J]. Earth-Science Reviews,2012,115(1/2):97-120.

    Google Scholar

    [5] 谢玉洪,童传新,裴健翔,等. 莺歌海盆地黄流组二段碎屑锆石年龄与储层物源分析[J]. 大地构造与成矿学,2016,40(3):517-530.

    Google Scholar

    [6] 姜龙杰,孙志鹏,翟世奎,等. 琼东南盆地深水区钻井岩屑稀土元素地球化学特征及其对沉积物源和环境的指示[J]. 海洋科学,2018,42(4):89-100.

    Google Scholar

    [7] 毛光周,刘池洋. 地球化学在物源及沉积背景分析中的应用[J]. 地球科学与环境学报,2011,33(4):337-348.

    Google Scholar

    [8] 杨仁超,李进步,樊爱萍,等. 陆源沉积岩物源分析研究进展与发展趋势[J]. 沉积学报,2013,31(1):99-107.

    Google Scholar

    [9] 刘为,邓广君,应明雄,等. 莺歌海盆地深层超高温超高压天然气勘探新问题及对策[J]. 世界地质,2021,40(1):107-114.

    Google Scholar

    [10] 冯冲,黄志龙,童传新,等. 莺歌海盆地地层压力演化特征及其与天然气运聚成藏的关系[J]. 吉林大学学报(地球科学版),2013,43(5):1341-1350.

    Google Scholar

    [11] 宋瑞有,于俊峰,韩光明,等. 莺歌海盆地底辟类型及侵入方式[J]. 世界地质,2017,36(4):1235-1243.

    Google Scholar

    [12] 金博,刘震,李绪深. 莺歌海盆地天然气底辟优势聚集规律及勘探意义[J]. 吉林大学学报(地球科学版),2009,39(2):196-204.

    Google Scholar

    [13] 张建新,范彩伟,谭建财,等. 莺歌海盆地中新世沉积体系演化特征及勘探意义[J]. 地质科技情报,2019,38(6):51-59.

    Google Scholar

    [14] 郭令智,钟志洪,王良书,等. 莺歌海盆地周边区域构造演化[J]. 高校地质学报,2001,7(1):1-12.

    Google Scholar

    [15] 张启明. 莺-琼盆地的演化与构造-热体制[J]. 天然气工业,1999,19(1):36-42.

    Google Scholar

    [16] 李伟,刘平,艾能平,等. 莺歌海盆地乐东地区中深层储层发育特征及成因机理[J]. 岩性油气藏,2020,32(1):19-26.

    Google Scholar

    [17] 杨东辉. 莺歌海盆地拗陷期构造变形特征及古构造环境探索[D]. 北京: 中国石油大学(北京), 2019.

    Google Scholar

    [18] 向宏发,韩竹军,虢顺民,等. 红河断裂带大型右旋走滑运动与伴生构造地貌变形[J]. 地震地质,2004,26(4):597-610.

    Google Scholar

    [19] 陈文寄,李齐,汪一鹏. 哀牢山-红河左旋走滑剪切带中新世抬升的时间序列[J]. 地质论评,1996,42(5):385-390.

    Google Scholar

    [20] LELOUP P H,HARRISON T M,RYERSON F,et al. Structural,petrological and thermal evolution of a Tertiary ductile strike-slip shear zone,Diancang Shan,Yunnan[J]. Journal of Geophysical Research,1993,98(B4):6715-6743. doi: 10.1029/92JB02791

    CrossRef Google Scholar

    [21] 尤丽,范彩伟,吴仕玖,等. 莺歌海盆地乐东区储层碳酸盐胶结物成因机理及与流体活动的关系[J]. 地质学报,2021,95(2):578-587.

    Google Scholar

    [22] 王振峰,裴健翔,郝德峰,等. 莺-琼盆地中新统大型重力流储集体发育条件、沉积特征及天然气勘探有利方向[J]. 中国海上油气,2015,27(4):13-21.

    Google Scholar

    [23] 谢玉洪,范彩伟. 莺歌海盆地东方区黄流组储层成因新认识[J]. 中国海上油气,2010,22(6):355-359,386.

    Google Scholar

    [24] 谢玉洪,王振峰,解习农,等. 莺歌海盆地坡折带特征及其对沉积体系的控制[J]. 地球科学,2004,29(5):569-574.

    Google Scholar

    [25] 徐德明,桑隆康,马大铨,等. 海南岛中新元古代花岗质岩类的成因及其构造意义[J]. 大地构造与成矿学,2008,32(2):247-256.

    Google Scholar

    [26] 李孙雄,云平,范渊,等. 海南岛琼中地区琼中岩体锆石U-Pb年龄及其地质意义[J]. 大地构造与成矿学,2005,29(2):227-233,241.

    Google Scholar

    [27] HOANG L V,WU F Y,CLIFT P D,et al. Evaluating the evolution of the Red River system based on in situ U-Pb dating and Hf isotope analysis of zircons[J]. Geochemistry Geophysics Geosystems,2013,10(11):1-20.

    Google Scholar

    [28] 王策. 莺歌海盆地上中新统—更新统储层物源识别: 来自碎屑锆石U-Pb年代学和地球化学制约 [D]. 广州: 中国科学院研究生院(广州地球化学研究所), 2016.

    Google Scholar

    [29] ROGER F,JOLIVET M,LACASSIN R,et al. Long and complex thermal history of the Song chay metamorphic dome(northern Vietnam)by multi-system geochronology[J]. Tectonophysics,2000,321(4):449-466. doi: 10.1016/S0040-1951(00)00085-8

    CrossRef Google Scholar

    [30] 许苗苗,魏晓椿,杨蓉,等. 重矿物分析物源示踪方法研究进展[J]. 地球科学进展,2021,36(2):154-171.

    Google Scholar

    [31] GARZANTI E,ANDÒ S. Chapter 20 heavy mineral concentration in modern sands:implications for provenance interpretation[J]. Developments in Sedimentology,2007,58(7):517-545.

    Google Scholar

    [32] BOGGS S. Petrology of Sedimentary Rocks [M]. Cambridge: Cambridge University Press, 2009: 600.

    Google Scholar

    [33] MORTON A C,HALLSWORTH C. Identifying provenance specific features of detrital heavy mineral assemblages in sandstones[J]. Sedimentary Geology,1994,90(3):241-256.

    Google Scholar

    [34] GARZANTI E,ANDÒ S. Heavy minerals for junior wood chucks[J]. Minerals,2019,9(3):148. doi: 10.3390/min9030148

    CrossRef Google Scholar

    [35] MAHALANOBIS P C. On the generalized distance in statistics[J]. National lnstitute of Science of India,1936,2:49-55.

    Google Scholar

    [36] ROUSSEEUW P J,DRIESSEN K V. A fast algorithm for the minimum covariance determinant estimator[J]. Technometrics,1999,41(3):212-223. doi: 10.1080/00401706.1999.10485670

    CrossRef Google Scholar

    [37] 吴娟. 基于余弦距离的智能拼图算法的应用研究[J]. 信息与电脑(理论版),2022,34(2):56-58,73.

    Google Scholar

    [38] GIBBONS J D, CHAKRABORTI S. Nonparametric statistical inference [M]. New York: M Dekker, 1992: 122.

    Google Scholar

    [39] 纪宏金, 时艳香, 陆继龙. 地球化学数据统计分析 [M]. 长春: 吉林大学出版社, 2013: 22, 142.

    Google Scholar

    [40] 段忠祥. 复杂网络中个体行为一致性控制研究[J]. 计算机技术与发展,2019,29(9):102-105,140.

    Google Scholar

    [41] PENG N,ZHU X Y,LIU Y S. Complex network dynamics of the topological structure in a geochemical feld from the Nanling area in South China[J]. Nature,2020,10(1):19826.

    Google Scholar

    [42] 梁世娇,柴争义. 基于多目标自适应Memetic算法的复杂网络社区检测[J]. 江苏大学学报(自然科学版),2020,41(3):262-267,280.

    Google Scholar

    [43] 梁世娇,柴争义. 基于节点亲密度的标签传播重叠社区发现算法[J]. 云南大学学报(自然科学版),2020,42(1):58-65.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(3)

Article Metrics

Article views(255) PDF downloads(49) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint