Citation: | DENG Yonghui, DAI Jianwen, WANG Hua, HENG Liqun, YANG Jiao, CAI Junjie. Characteristics and major controlling factors of the fractures in igneous buried hill reservoirs in Huizhou Oilfield[J]. Marine Geology Frontiers, 2024, 40(1): 11-19. doi: 10.16028/j.1009-2722.2023.054 |
To clarify the reservoir quality and development potential of the igneous buried hill reservoir in Huizhou Oilfield, the characteristics, spatial distribution, and key controlling factors of fractures were studied comprehensively by using the data of core, imaging logging, and thin section. Results show that three groups of NW-, NE-, and EW-trending fracture systems are developed in the buried hill reservoirs, of which the NW-trending fracture system is dominant. The main frequency of the fracture dip angle is 49°~60°. Three types of fractures were distinguished, i.e., structural fractures, dissolution fractures, and diagenetic fractures. The structural fractures are major types, followed by dissolution fractures, and diagenetic fractures are isolated and contributing little to the reservoir properties. The development of fracture was controlled by tectonic, lithologic, and fault and fluid action. Multi-stage tectonic movement was the mechanical basis of the fracture formation in the buried hill rock. Granite and diorite were conducive to the formation of fractures. The trap-control fault affected the fracture development in range of about 150 m, and the influence range of the secondary faults was about 80 m. Based on quantitative characterization of main controlling factors of fracture development, the dominant region of fractures in the buried hill was predicted by PR multiple information probability fusion method. In addition, four dominant fracture zones were recognized in the weathering zone in the buried-hill. This research provided an important reference for reservoir evaluation and development of the buried hill reservoir in Huizhou oilfield.
[1] | 田立新,刘杰,张向涛,等. 珠江口盆地惠州26-6大中型泛潜山油气田勘探发现及成藏模式[J]. 中国海上油气,2020,32(4):1-11. |
[2] | 刘杰,徐国盛,温华华,等. 珠江口盆地惠州26-6构造古潜山-古近系油气成藏主控因素[J]. 天然气工业,2021,41(11):54-63. |
[3] | 谢玉洪,高阳东. 中国海油近期国内勘探进展与勘探方向[J]. 中国石油勘探,2020,25(1):20-30. |
[4] | 周蒂,孙珍,陈汉宗,等. 南海及其围区中生代岩相古地理和构造演化[J]. 地学前缘,2005,12(3):204-218. |
[5] | 史超群,王佐涛,朱文慧,等. 塔里木盆地库车坳陷克拉苏构造带大北地区超深储层裂缝特征及其对储层控制作用[J]. 天然气地球科学,2020,31(12):1687-1699. |
[6] | 侯明才,曹海洋,李慧勇,等. 渤海海域渤中19-6构造带深层潜山储层特征及其控制因素[J]. 天然气工业,2019,39(1):33-44. |
[7] | 施和生,杜家元,梅廉夫,等. 珠江口盆地惠州运动及其意义[J]. 石油勘探与开发,2020,47(3):447-461. |
[8] | 周杰,杨希冰,杨金海,等. 琼东南盆地深水区中生界潜山裂缝发育特征及形成机理:以松南低凸起Y8区为例[J]. 中国海上油气,2020,32(3):1-9. |
[9] | 冷杰,刘杰,陈安清,等. 珠江口盆地惠州26-6潜山中生代中基性火山岩储层成因[J]. 成都理工大学学报(自然科学版),2021,48(6):661-674. |
[10] | 朱明,施洋,朱俊章,等. 惠州凹陷HZ21-1构造油气成因来源及有利滚动勘探区预测[J]. 中国海上油气,2017,29(6):12-22. |
[11] | 施和生,高阳东,刘军,等. 珠江口盆地惠州26洼“源-汇-聚”特征与惠州26-6大油气田发现启示[J]. 石油与天然气地质,2022,43(4):777-791. doi: 10.11743/ogg20220404 |
[12] | 贾培蒙,张向涛,陈维涛,等. 珠江口盆地惠州凹陷惠州 21 古潜山的形成演化及其对深层油气成藏的控制[J]. 海洋地质前沿,2021,37(12):27-37. |
[13] | 崔鑫,李江海,王运增,等. 海拉尔盆地苏德尔特构造带基底裂缝特征及控制因素[J]. 地质论评,2016,62(5):1257-1270. |
[14] | 刘文超,汪跃,廖新武,等. 渤海西南部海域变质岩潜山优质储层发育规律及成因机理[J]. 海洋地质前沿,2022,38(12):47-55. |
[15] | 陈长民, 施和生, 许仕策, 等. 珠江口盆地(东部)第三系油气藏形成条件[M] . 北京: 科学出版社, 2003. |
[16] | 汪勇. 车排子地区石炭系火山岩裂缝成因特征及控油作用研究[D]. 青岛: 中国石油大学(华东), 2019. |
[17] | 唐历山,范彩伟,张焱,等. 琼东南盆地花岗岩潜山发育演化及控藏作用[J]. 海洋地质前沿,2023,39(3):81-90. |
[18] | 田立新,施和生,刘杰,等. 珠江口盆地惠州凹陷新领域勘探重大发现及意义[J]. 中国石油勘探,2020,25(4):22-30. |
[19] | 陈心路,韦阿娟,王粤川,等. 渤海海域西南部太古宙变质岩岩性对裂缝的控制作用[J]. 地质科技通报,2018,37(2):165-173. |
[20] | 刘海伦. 珠江口盆地珠一坳陷裂陷结构: 基底属性与区域应力联合制约[D]. 武汉: 中国地质大学, 2018. |
[21] | 倪金龙,夏斌,刘海龄. 南海及邻区前中生代构造演化与东特提斯构造域阴[J]. 海洋地质动态,2005,21(10):11-16. |
[22] | 邓永辉,王华,衡立群,等. 火成岩复杂岩性潜山“相控”裂缝建模及质控方法:以惠州 26-6 油田潜山油气藏为例[J]. 科学技术与工程,2023,23(18):7671-7677. |
[23] | 郑华,康凯,刘卫林,等. 渤海深层变质岩潜山油藏裂缝主控因素及预测[J]. 岩性油气藏,2022,34(3):29-38. |
[24] | 刘国平,董少群,李洪楠,等. 辽河盆地西部凹陷古潜山天然裂缝特征及其影响因素[J]. 石油与天然气地质,2020,4(13):525-533. |
[25] | 张鹏飞,刘惠民,曹忠祥,等. 太古宇潜山风化壳储层发育主控因素分析:以鲁西-济阳地区为例[J]. 吉林大学学报(地球科学版),2015,45(5):1289-1298. |
[26] | 李思伟. 珠江口盆地惠州凹陷新生代火山岩: 从岩石成因到火山岩储层[D]. 长春: 吉林大学, 2020. |
[27] | 吴伟涛,高先志,李理,等. 渤海湾盆地大型潜山油气藏形成的有利因素[J]. 特种油气藏,2015,22(2):22-26. doi: 10.3969/j.issn.1006-6535.2015.02.005 |
[28] | 杜晓峰,刘晓健,张新涛,等. 渤海海域太古界变质岩储层特征与形成控制因素[J]. 中国海上油气,2021,33(3):15-27. |
[29] | 王昕,周心怀,徐国胜,等. 渤海海域蓬莱9-1花岗岩潜山大型油气田储层发育特征与主控因素[J]. 石油与天然气地质,2015,36(2):262-270. |
[30] | 马清,覃军,徐靖琦,等. 丽水凹陷基岩岩性分布预测:以丽水 A 洼为例[J]. 海洋地质前沿,2023,39(7):87-96. |
[31] | 陈心路,赵志平,惠冠洲,等. 渤海海域变质岩风化壳发育特征及其储层定量预测[J]. 海洋地质前沿,2021,37(10):33-41. |
[32] | 孙爽,赵淑霞,候加根,等. 致密砂岩储层多尺度裂缝分级建模方法:以红河油田92井区长8储层为例[J]. 石油科学通报,2019,4(1):11-26. |
Regional structural framework of the Huizhou Oilfield
Reservoir profile of the Huizhou Oilfield
Photos and thin section characteristics of fractures in typical cores of the buried hill reservoir in Huizhou Oilfield
Characteristics of fracture occurrence, density, and aperture in different layers of buried hill
Fracture distribution pattern of buried hill reservoir in the Huizhou Oilfield
Relationship between distance from fault and the density of structural fracture density
Relationship between the relative height of ancient relief and the density of dissolution fractures
Prediction of dominant zone of fracture development in the weathering zone of buried hill