Citation: | ZHAO Yuankai, LI Maotian, ZENG Jianwei, CHEN Jing, LIU Xiaoqiang, YAO Huikun, LIU Yan, FAN Chun, TAN Zijie, ZHANG Wenyan, PENG Dan. Scouring and silting characteristics and dynamic mechanism of ebb and flow and spring-neap tidal cycles in Sansha Bay[J]. Marine Geology Frontiers, 2024, 40(3): 48-54. doi: 10.16028/j.1009-2722.2023.040 |
The variation rules of tidal flat at different scales has always been one of the main contents in the study of surface processes. The high-precision instruments ADV, CTD, and OBS were used to observe the scouring and silting characteristics of ebb and flow and spring-neap tide on May 26 to June 5, 2020 in Sansha Bay, Fujian, SE China. Results show that during the tidal cycle, the scouring and silting of the tidal flat are characterized by scouring at the beginning of rising tide, silting at the end of falling tide, and stabilizing in the middle period, the average scouring was 4.05 mm within 30 min when water depth is less than 1 m at the beginning of flood tide, and the average siltation was 3.72 mm within 30 min when water depth was less than 1 m at the end of ebb tide, and was in dynamic stability in the middle period. During the spring-neap tide period, the average siltation from mid tide to neap tide was 3.4 mm, and the average scouring from neap tide to spring tide was 8.2 mm. The correlation analysis on impact factors including velocity, turbulent energy, water depth, and suspended sediment concentration to the scouring and siltation showed that in tidal cycle, fluctuations in velocity and turbulent kinetic energy determined the changes of scour at the beginning of flood tide and siltation at the end of ebb tide. During spring-neap tides, the characteristics of more flood scouring than ebb siltation determined the scouring from spring tide to neap tide, and less flood scouring than ebb siltation determined the siltation from neap tide to spring tide. This study on scouring and silting mechanism in ebb and flow periods and spring and spring tides provided a reference for the study of tidal flat dynamic geomorphology and dynamic sedimentology.
[1] | 任美锷. 中国海岸带管理问题[J]. 海洋开发,1986(3):56-60. |
[2] | 黄广,陈沈良,张国安. 南汇边滩水沙运动特性及其围涂工程影响[J]. 人民长江,2007,38(1):60-63. |
[3] | POSTMA H. Transport and accumulation of suspended matter in the Dutch Wadden Sea[J]. Netherlands Journal of Sea Research,1961,1(1/2):148. |
[4] | STRAATEN L,KUENEN P. Tidal action as a cause of clay accumulation[J]. Journal of Sedimentary Petrology,1958,28(4):406-413. |
[5] | YANG S L, LI M, DAI S B, et al. Drastic decrease in sediment supply from the Yangtze River and its challenge to coastal wetland management[J]. Geophysical Research Letters, 2006, 33(6), L064080: 1-4. |
[6] | 杜景龙, 杨世伦, 陈广平. 30多年来人类活动对长江三角洲前缘滩涂冲淤演变的影响[J]. 海洋通报 2013, 32(3): 296-302. |
[7] | 李炎,张立人,谢钦春. 浙江象山大目涂淤泥质潮滩发育的周期性[J]. 海洋学报(中文版),1987,9(6):725-734. |
[8] | 夏小明,谢钦春,李炎,等. 港湾淤泥质潮滩的周期变化[J]. 海洋学报(中文版),1997,19(4):99-108. |
[9] | 龚小辉,柏春广,王建. 淤泥质潮滩沉积周期性研究综述[J]. 南京师范大学学报(自然科学版),2012,35(1):117-121. |
[10] | 龚政,靳闯,张长宽,等. 江苏淤泥质潮滩剖面演变现场观测[J]. 水科学进展,2014,25(6):880-887. |
[11] | 张忍顺. 江苏省淤泥质潮滩的潮流特征及悬移质沉积过程[J]. 海洋与湖沼,1986,17(3):235-245. |
[12] | 李炎,陈锡土,夏小明,等. 沉积过程分形表达及其冲淤幅度分析应用[J]. 海洋与湖沼,2000,31(1):84-92. |
[13] | 薛元忠,何青,王元叶. OBS 浊度计测量泥沙浓度的方法与实践研究[J]. 泥沙研究,2004,29(4):56-60. |
[14] | HOITINK A J F,HOEKSTRA P. Observations of suspended sediment from ADCP and OBS measurements in a mud-dominated environment[J]. Coastal Engineering,2005,52(2):103-118. doi: 10.1016/j.coastaleng.2004.09.005 |
[15] | 张颖,闫玉茹,章家保,等. 潮滩冲淤观测技术发展现状[J]. 海洋科学,2021,45(3):152-162. |
[16] | 庞文鸿. 中强潮海滩沉积动力过程研究[D]. 上海: 华东师范大学, 2021. |
[17] | SHI B W,YANG S L,WANG Y P,et al. Relating accretion and erosion at an exposed tidal wetland to the bottom shear stress of combined current-wave action[J]. Geomorphology,2012,138(1):380-389. doi: 10.1016/j.geomorph.2011.10.004 |
[18] | 王杰,戴志军,魏稳,等. 基于LiDAR观测的长江河口南汇南滩近期动力地貌研究[J]. 海洋与湖沼,2018,49(4):756-768. |
[19] | 林航. 福建三沙湾的潮汐特征[J]. 福建水产,2014,36(4):306-314. doi: 10.3969/j.issn.1006-5601.2014.04.009 |
[20] | 朱琴. 基于现场观测和数值模拟的淤泥质潮滩沉积动力过程研究[D]. 上海: 华东师范大学, 2017. |
[21] | 侯仲荃,石进,王宪业,等. 空心块体水沙动力及泥沙淤积特性研究[J]. 海洋学报,2022,44(5):124-133. |
[22] | 徐孟飘,东培华,马骏,等. 大小潮作用对潮滩沉积物层理影响的数值模拟研究[J]. 海洋学报(中文版),2021,43(10):70-80. |
[23] | 王建,柏春广,徐永辉. 江苏中部淤泥质潮滩潮汐层理成因机理和风暴沉积判别标志[J]. 沉积学报,2006,24(4):562-569. |
[24] | WANG J,DAI Z J,FAGHERAZZI S,et al. A novel approach to discriminate sedimentary characteristics of deltaic tidal flats with terrestrial laser scanner:results from a case study[J]. Sedimentology,2022,69(4):1626-1648. doi: 10.1111/sed.12970 |
[25] | 恽才兴. 长江河口潮滩冲淤和滩槽泥沙交换[J]. 泥沙研究,1983,8(4):43-52. |
[26] | NIELSEN P,TEAKLE I A L. Turbulent diffusion of momentum and suspended particles:a finite-mixing-length theory[J]. Physics of Fluids,2004,16(7):2342-2348. doi: 10.1063/1.1738413 |
[27] | 徐元,王宝灿,章可奇. 上海淤泥质潮滩潮锋作用及其形成机制初步探讨[J]. 地理研究,1994,13(3):60-68. doi: 10.3321/j.issn:1000-0585.1994.03.007 |
[28] | YANG S L,LI P,GAO A,et al. Cyclical variability of suspended sediment concentration over a low-energy tidal flat in Jiaozhou Bay, China:effect of shoaling on wave impact[J]. Geo-Marine Letters,2007,27(5):345-353. doi: 10.1007/s00367-007-0058-2 |
[29] | SHI B W,YANG S L,WANG Y P,et al. Intratidal erosion and deposition rates inferred from field observations of hydrodynamic and sedimentary processes:a case study of a mudflat-saltmarsh transition at the Yangtze delta front[J]. Continental Shelf Research,2014(90):109-116. |
[30] | 陈卫跃. 潮滩泥沙输移及沉积动力环境:以杭州湾北岸、长江口南岸部分潮滩为例[J]. 海洋学报(中文版),1991,13(6):813-821. |
[31] | 王玉海,汤立群,冯浩川. “上淤下冲”型潮滩的波流动力特征及剖面塑造[J]. 泥沙研究,2022,47(2):65-72. |
[32] | BRUNEAU N,BERTIN X,CASTELLE B,et al. Tide-induced flow signature in rip currents on a meso-macrotidal beach[J]. Ocean Modelling,2014,74(2):53-59. |
Research area,distribution of observation points, and instrument layout
Scouring and silting and dynamic changes of ebb and flow and spring-neap tidal cycles as well as changes in average elevation, maximum water depth, average flow velocity, and average suspended sediment concentration during the tidal cycle
Correlation of the three stage δ difference inTIDAL CYCLE
The relationship between changes in scouring/silting , turbulent kinetic energy, suspended sediment concentration and water depth