2024 Vol. 40, No. 3
Article Contents

ZHAO Yuankai, LI Maotian, ZENG Jianwei, CHEN Jing, LIU Xiaoqiang, YAO Huikun, LIU Yan, FAN Chun, TAN Zijie, ZHANG Wenyan, PENG Dan. Scouring and silting characteristics and dynamic mechanism of ebb and flow and spring-neap tidal cycles in Sansha Bay[J]. Marine Geology Frontiers, 2024, 40(3): 48-54. doi: 10.16028/j.1009-2722.2023.040
Citation: ZHAO Yuankai, LI Maotian, ZENG Jianwei, CHEN Jing, LIU Xiaoqiang, YAO Huikun, LIU Yan, FAN Chun, TAN Zijie, ZHANG Wenyan, PENG Dan. Scouring and silting characteristics and dynamic mechanism of ebb and flow and spring-neap tidal cycles in Sansha Bay[J]. Marine Geology Frontiers, 2024, 40(3): 48-54. doi: 10.16028/j.1009-2722.2023.040

Scouring and silting characteristics and dynamic mechanism of ebb and flow and spring-neap tidal cycles in Sansha Bay

More Information
  • The variation rules of tidal flat at different scales has always been one of the main contents in the study of surface processes. The high-precision instruments ADV, CTD, and OBS were used to observe the scouring and silting characteristics of ebb and flow and spring-neap tide on May 26 to June 5, 2020 in Sansha Bay, Fujian, SE China. Results show that during the tidal cycle, the scouring and silting of the tidal flat are characterized by scouring at the beginning of rising tide, silting at the end of falling tide, and stabilizing in the middle period, the average scouring was 4.05 mm within 30 min when water depth is less than 1 m at the beginning of flood tide, and the average siltation was 3.72 mm within 30 min when water depth was less than 1 m at the end of ebb tide, and was in dynamic stability in the middle period. During the spring-neap tide period, the average siltation from mid tide to neap tide was 3.4 mm, and the average scouring from neap tide to spring tide was 8.2 mm. The correlation analysis on impact factors including velocity, turbulent energy, water depth, and suspended sediment concentration to the scouring and siltation showed that in tidal cycle, fluctuations in velocity and turbulent kinetic energy determined the changes of scour at the beginning of flood tide and siltation at the end of ebb tide. During spring-neap tides, the characteristics of more flood scouring than ebb siltation determined the scouring from spring tide to neap tide, and less flood scouring than ebb siltation determined the siltation from neap tide to spring tide. This study on scouring and silting mechanism in ebb and flow periods and spring and spring tides provided a reference for the study of tidal flat dynamic geomorphology and dynamic sedimentology.

  • 加载中
  • [1] 任美锷. 中国海岸带管理问题[J]. 海洋开发,1986(3):56-60.

    Google Scholar

    [2] 黄广,陈沈良,张国安. 南汇边滩水沙运动特性及其围涂工程影响[J]. 人民长江,2007,38(1):60-63.

    Google Scholar

    [3] POSTMA H. Transport and accumulation of suspended matter in the Dutch Wadden Sea[J]. Netherlands Journal of Sea Research,1961,1(1/2):148.

    Google Scholar

    [4] STRAATEN L,KUENEN P. Tidal action as a cause of clay accumulation[J]. Journal of Sedimentary Petrology,1958,28(4):406-413.

    Google Scholar

    [5] YANG S L, LI M, DAI S B, et al. Drastic decrease in sediment supply from the Yangtze River and its challenge to coastal wetland management[J]. Geophysical Research Letters, 2006, 33(6), L064080: 1-4.

    Google Scholar

    [6] 杜景龙, 杨世伦, 陈广平. 30多年来人类活动对长江三角洲前缘滩涂冲淤演变的影响[J]. 海洋通报 2013, 32(3): 296-302.

    Google Scholar

    [7] 李炎,张立人,谢钦春. 浙江象山大目涂淤泥质潮滩发育的周期性[J]. 海洋学报(中文版),1987,9(6):725-734.

    Google Scholar

    [8] 夏小明,谢钦春,李炎,等. 港湾淤泥质潮滩的周期变化[J]. 海洋学报(中文版),1997,19(4):99-108.

    Google Scholar

    [9] 龚小辉,柏春广,王建. 淤泥质潮滩沉积周期性研究综述[J]. 南京师范大学学报(自然科学版),2012,35(1):117-121.

    Google Scholar

    [10] 龚政,靳闯,张长宽,等. 江苏淤泥质潮滩剖面演变现场观测[J]. 水科学进展,2014,25(6):880-887.

    Google Scholar

    [11] 张忍顺. 江苏省淤泥质潮滩的潮流特征及悬移质沉积过程[J]. 海洋与湖沼,1986,17(3):235-245.

    Google Scholar

    [12] 李炎,陈锡土,夏小明,等. 沉积过程分形表达及其冲淤幅度分析应用[J]. 海洋与湖沼,2000,31(1):84-92.

    Google Scholar

    [13] 薛元忠,何青,王元叶. OBS 浊度计测量泥沙浓度的方法与实践研究[J]. 泥沙研究,2004,29(4):56-60.

    Google Scholar

    [14] HOITINK A J F,HOEKSTRA P. Observations of suspended sediment from ADCP and OBS measurements in a mud-dominated environment[J]. Coastal Engineering,2005,52(2):103-118. doi: 10.1016/j.coastaleng.2004.09.005

    CrossRef Google Scholar

    [15] 张颖,闫玉茹,章家保,等. 潮滩冲淤观测技术发展现状[J]. 海洋科学,2021,45(3):152-162.

    Google Scholar

    [16] 庞文鸿. 中强潮海滩沉积动力过程研究[D]. 上海: 华东师范大学, 2021.

    Google Scholar

    [17] SHI B W,YANG S L,WANG Y P,et al. Relating accretion and erosion at an exposed tidal wetland to the bottom shear stress of combined current-wave action[J]. Geomorphology,2012,138(1):380-389. doi: 10.1016/j.geomorph.2011.10.004

    CrossRef Google Scholar

    [18] 王杰,戴志军,魏稳,等. 基于LiDAR观测的长江河口南汇南滩近期动力地貌研究[J]. 海洋与湖沼,2018,49(4):756-768.

    Google Scholar

    [19] 林航. 福建三沙湾的潮汐特征[J]. 福建水产,2014,36(4):306-314. doi: 10.3969/j.issn.1006-5601.2014.04.009

    CrossRef Google Scholar

    [20] 朱琴. 基于现场观测和数值模拟的淤泥质潮滩沉积动力过程研究[D]. 上海: 华东师范大学, 2017.

    Google Scholar

    [21] 侯仲荃,石进,王宪业,等. 空心块体水沙动力及泥沙淤积特性研究[J]. 海洋学报,2022,44(5):124-133.

    Google Scholar

    [22] 徐孟飘,东培华,马骏,等. 大小潮作用对潮滩沉积物层理影响的数值模拟研究[J]. 海洋学报(中文版),2021,43(10):70-80.

    Google Scholar

    [23] 王建,柏春广,徐永辉. 江苏中部淤泥质潮滩潮汐层理成因机理和风暴沉积判别标志[J]. 沉积学报,2006,24(4):562-569.

    Google Scholar

    [24] WANG J,DAI Z J,FAGHERAZZI S,et al. A novel approach to discriminate sedimentary characteristics of deltaic tidal flats with terrestrial laser scanner:results from a case study[J]. Sedimentology,2022,69(4):1626-1648. doi: 10.1111/sed.12970

    CrossRef Google Scholar

    [25] 恽才兴. 长江河口潮滩冲淤和滩槽泥沙交换[J]. 泥沙研究,1983,8(4):43-52.

    Google Scholar

    [26] NIELSEN P,TEAKLE I A L. Turbulent diffusion of momentum and suspended particles:a finite-mixing-length theory[J]. Physics of Fluids,2004,16(7):2342-2348. doi: 10.1063/1.1738413

    CrossRef Google Scholar

    [27] 徐元,王宝灿,章可奇. 上海淤泥质潮滩潮锋作用及其形成机制初步探讨[J]. 地理研究,1994,13(3):60-68. doi: 10.3321/j.issn:1000-0585.1994.03.007

    CrossRef Google Scholar

    [28] YANG S L,LI P,GAO A,et al. Cyclical variability of suspended sediment concentration over a low-energy tidal flat in Jiaozhou Bay, China:effect of shoaling on wave impact[J]. Geo-Marine Letters,2007,27(5):345-353. doi: 10.1007/s00367-007-0058-2

    CrossRef Google Scholar

    [29] SHI B W,YANG S L,WANG Y P,et al. Intratidal erosion and deposition rates inferred from field observations of hydrodynamic and sedimentary processes:a case study of a mudflat-saltmarsh transition at the Yangtze delta front[J]. Continental Shelf Research,2014(90):109-116.

    Google Scholar

    [30] 陈卫跃. 潮滩泥沙输移及沉积动力环境:以杭州湾北岸、长江口南岸部分潮滩为例[J]. 海洋学报(中文版),1991,13(6):813-821.

    Google Scholar

    [31] 王玉海,汤立群,冯浩川. “上淤下冲”型潮滩的波流动力特征及剖面塑造[J]. 泥沙研究,2022,47(2):65-72.

    Google Scholar

    [32] BRUNEAU N,BERTIN X,CASTELLE B,et al. Tide-induced flow signature in rip currents on a meso-macrotidal beach[J]. Ocean Modelling,2014,74(2):53-59.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(764) PDF downloads(124) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint