2024 Vol. 40, No. 3
Article Contents

GAO Shunli. Broadband and high-precision sesmic processing technology and its application on offshore deep lithology exploration[J]. Marine Geology Frontiers, 2024, 40(3): 75-83. doi: 10.16028/j.1009-2722.2023.039
Citation: GAO Shunli. Broadband and high-precision sesmic processing technology and its application on offshore deep lithology exploration[J]. Marine Geology Frontiers, 2024, 40(3): 75-83. doi: 10.16028/j.1009-2722.2023.039

Broadband and high-precision sesmic processing technology and its application on offshore deep lithology exploration

  • Broadband and high-precision processing of offshore horizontal cable 3D data is receiving increasing attention in the exploration of lithological oil and gas reservoirs recently. However, specialized analysis and discussion are lacking. The broadband high-precision processing technology of 3D data of offshore horizontal cables was systematically summarized, and the procedures of broadband high-precision processing and key technologies of horizontal cables in shallow water area were established, including mainly the deghosting in horizontal cables, pre-stack integrated multi-domain denoising, shallow-water multi-wave combinational suppression, and target-based fine-velocity modeling and fine-migration imaging, etc. By applying real data on the western slope of Xihu Sag, the broadband, amplitude-preserving and high-precision seismic results with improved resolution were obtained. The reservoir inversion and geological evaluation carried out by the results are in good agreement with new drillings, from which the geological viewpoint obtained is more reasonable.

  • 加载中
  • [1] BARR F J,SANDERS J I. Attenuation of water-column reverberations using pressure and velocity detectors in a water-bottom cable[C]. Expanded Abstracts of the 59th Annual SEG Meeting,1989:653-656

    Google Scholar

    [2] HILL D,COMBED L,BACON J. Over/Under acquisition and data processing the next quantum leap in seismic technology[J]. Geophysics,2006,5(2):81-95.

    Google Scholar

    [3] SOUBARAS R,DOWLE R. Variable-depth streamer,a broadband marine solution[J]. First Break,2010,28:89-96.

    Google Scholar

    [4] WANG P,RAY S,PENG C. Premigration deghosting for marine streamer data using a bootstrap approach [C]. Expanded Abstracts of the Annual International Meeting of SEG,2012: 1-5.

    Google Scholar

    [5] 陈华,高顺莉,姚刚,等. 海上中深层宽频宽方位地震勘探技术及应用[M]. 武汉:中国地质大学出版社,2022:56-74

    Google Scholar

    [6] 颜中辉,王小杰,刘媛媛,等. 东海多次波压制的关键技术[J]. 海洋地质前沿,2020,36(7):64-72.

    Google Scholar

    [7] 谢玉洪,李列,袁全社,等. 海上宽频地震勘探技术在琼东南盆地深水区的应用[J]. 石油地球物理勘探,2012,47(3):431-435.

    Google Scholar

    [8] 高顺莉,陈华,刘建斌,等. 中国东海海域中深层地震采集技术攻关进展和实践[J]. 中国石油勘探,2020,25(1):691-700.

    Google Scholar

    [9] 王艳冬,王建花,王小六,等. 一种基于波动方程迭代反演的平缆鬼波压制新方法[J]. 中国海上油气,2018,30(1):74-80.

    Google Scholar

    [10] 顾元,文鹏飞,张宝金,等. 水平缆地震数据的鬼波压制方法及其应用[J]. 地球物理学进展,2017,32(4):1764-1772. doi: 10.6038/pg20170447

    CrossRef Google Scholar

    [11] 毛云新,刘晓晖,包全,等. 斜缆宽频宽方位地震资料处理关键技术在西湖凹陷P气田的应用[J]. 海洋地质前沿,2022,38(3):74-81.

    Google Scholar

    [12] 王冲,顾汉明,许自强,等. 频率慢度域自适应迭代反演算法压制海上倾斜缆鬼波方法及其应用[J]. 地球物理学报,2016,59(12):4677-4689. doi: 10.6038/cjg20161227

    CrossRef Google Scholar

    [13] 高顺莉,胡森清,鲁法伟,等. Walkaway和Walkaround VSP技术在东海深层气田中的应用[J]. 地球物理学进展,2019,34(5):2016-2021. doi: 10.6038/pg2019CC0327

    CrossRef Google Scholar

    [14] 丁在宇,杨勇,王一鸣,等. 浅海拖缆地震数据处理中关键技术的应用与效果[J]. 石油地球物理勘探,2017,52(S2):56-63.

    Google Scholar

    [15] 彭海龙,任婷,赫建伟,等. 基于水层建模理论的浅水多次波压制方法研究与应用[J]. 地球物理学进展,2016,31(4):1646-1654. doi: 10.6038/pg20160432

    CrossRef Google Scholar

    [16] 周心怀,高顺莉,高伟中,等. 东海陆架盆地西湖凹陷平北斜坡带海陆过渡型岩性油气藏形成与分布预测[J]. 中国石油勘探,2019,24(2):153-164.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(454) PDF downloads(112) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint