2024 Vol. 40, No. 2
Article Contents

YU Qi, HE Gaowen, YANG Yong. Status quo and prospect in acoustic detection technology for submarine cobalt-rich crust exploration[J]. Marine Geology Frontiers, 2024, 40(2): 83-92. doi: 10.16028/j.1009-2722.2023.031
Citation: YU Qi, HE Gaowen, YANG Yong. Status quo and prospect in acoustic detection technology for submarine cobalt-rich crust exploration[J]. Marine Geology Frontiers, 2024, 40(2): 83-92. doi: 10.16028/j.1009-2722.2023.031

Status quo and prospect in acoustic detection technology for submarine cobalt-rich crust exploration

More Information
  • Cobalt-rich crusts are one of the deep-sea mineral resources with great potential, and have become an important target of exploration in the world. Acoustic detection technology has been widely used to search for cobalt-rich crust resources due to its unique advantages in large-area survey and local continuous fine exploration. The distribution characteristics of cobalt-rich crusts are summarized, the traditional exploration methods are commented, the application status of acoustic detection technologies such as multi-beam system, side-scan sonar, sub-bottom profiler probe are reviewed, and in-situ high-frequency thickness measurement in the exploration of cobalt-rich crusts is introduced. In addition, the status quo in research and development in this regard in China and other countries of the world are compared, and three suggestions on future demand of cobalt-rich crusts exploration are proposed: to develop integrated acoustic detection technology to realize comprehensive measurement of seafloor characteristics, to make comprehensive use of deep-sea submersible to achieve high-precision near seabed exploration, and to deeply integrate the Big Data and artificial intelligence technology to obtain intelligent processing of massive acoustic data.

  • 加载中
  • [1] HALBACH P. Processes controlling the heavy metal distribution in Pacific ferromanganese nodules and crusts[J]. Geologische Rundschau,1986,75(1):235-247. doi: 10.1007/BF01770191

    CrossRef Google Scholar

    [2] HEIN J R, KOSCHINSKY A, BAU M, et al. Cobalt-rich ferromanganese crusts in the Pacific[M]//Cronan D S. Handbook of Marine Mineral Deposits. Florida: CRC Press, 2000: 239-279.

    Google Scholar

    [3] OKAMOTO N,USUI A. Regional distribution of co-rich ferromanganese crusts and evolution of the seamounts in the Northwestern Pacific[J]. Marine Georesources and Geotechnology,2014,32(3):187-206.

    Google Scholar

    [4] 韦振权,何高文,邓希光,等. 大洋富钴结壳资源调查与研究进展[J]. 中国地质,2017,44(3):460-472.

    Google Scholar

    [5] HALBACH P, MARBLER H. Marine ferromanganese crusts: contents, distribution and enrichment of strategic minor and trace elements[M]//BGR-Report. Hannover: Bundesanstalt für Geowissenschaften und Rohstoffe, 2009: 1-73.

    Google Scholar

    [6] HEIN J R,MIZELL K,KOSCHINSKY A,et al. Deep-ocean mineral deposits as a source of critical metals for high and green technology applications:comparison with land-based resources[J]. Ore Geology Reviews,2013,51:1-14. doi: 10.1016/j.oregeorev.2012.12.001

    CrossRef Google Scholar

    [7] 刘永刚,何高文,姚会强,等. 世界海底富钴结壳资源分布特征[J]. 矿床地质,2013,32(6):1275-1284.

    Google Scholar

    [8] HEIN J R,KOSCHINSKY A. Deep-ocean ferromanganese crusts and nodules[J]. Treatise on Geochemistry,2014,13:273-291.

    Google Scholar

    [9] 张富元, 章伟艳, 朱克超, 等. 太平洋海山钴结壳资源评价[M]. 北京: 海洋出版社, 2011: 143-160.

    Google Scholar

    [10] 杨永,何高文,朱克超,等. 利用多波束回波强度进行中太平洋潜鱼海山底质分类[J]. 地球科学,2016,41(4):718-728.

    Google Scholar

    [11] HALBACH P E, JAHN A, CHERKASHOV G. Marine co-rich ferromanganese crust deposits: description and formation, occurrences and distribution, estimated world-wide resources[M]//Deep-Sea Mining. Cham: Springer International Publishing, 2017: 65-141.

    Google Scholar

    [12] 赵斌,吕文超,张向宇,等. 西太平洋维嘉平顶山沉积特征及富钴结壳资源意义[J]. 地质通报,2020,39(1):18-26.

    Google Scholar

    [13] 何高文,杨永,韦振权,等. 西太平洋中国富钴结壳勘探合同区矿床地质[J]. 中国有色金属学报,2021,31(10):2649-2664.

    Google Scholar

    [14] 张富元,章伟艳,任向文,等. 全球三大洋海山钴结壳资源量估算[J]. 海洋学报,2015,37(1):88-105.

    Google Scholar

    [15] 矫东风,金翔龙,初凤友,等. 厚结壳的形成条件及控制因素分析[J]. 矿床地质,2007,26(3):296-306.

    Google Scholar

    [16] USUI A,NISHI K,SATO H,et al. Continuous growth of hydrogenetic ferromanganese crusts since 17 Myr ago on Takuyo-Daigo Seamount,NW Pacific,at water depths of 800–5 500 m[J]. Ore Geology Reviews,2017,87:71-87. doi: 10.1016/j.oregeorev.2016.09.032

    CrossRef Google Scholar

    [17] 王淑玲,白凤龙,黄文星,等. 世界大洋金属矿产资源勘查开发现状及问题[J]. 海洋地质与第四纪地质,2020,40(3):160-170.

    Google Scholar

    [18] YAMAZAKI T,TSURUSAKI K,CHUNG J S. A gravity coring technique applied to cobalt-rich manganese deposits in the Pacific Ocean[J]. Marine Georesources and Geotechnology,1996,14(4):315-334.

    Google Scholar

    [19] ANDERSON J T,HOLLIDAY V,KLOSER R,et al. Acoustic seabed classification of marine physical and biological landscapes[J]. ICES Cooperative Research Report,2007,286:1-6.

    Google Scholar

    [20] 耿雪樵,徐行,刘方兰,等. 我国海底取样设备的现状与发展趋势[J]. 地质装备,2009,10(4):11-16.

    Google Scholar

    [21] USUI A,OKAMOTO T. Geophysical and geological exploration of cobalt-rich ferromanganese crusts:an attempt of small-scale mapping on a Micronesian seamount[J]. Marine Georesources and Geotechnology,2010,28(3):192-206.

    Google Scholar

    [22] 何水原,罗伟东,于彦江,等. 动力定位系统在大洋富钴结壳调查中的应用[J]. 海洋地质前沿,2015,31(10):57-64.

    Google Scholar

    [23] 罗伟东,何水原. 岩石拖网在富钴结壳调查中的应用[J]. 海洋地质前沿,2017,33(9):66-70.

    Google Scholar

    [24] 朱维庆. 海洋声学技术和信息处理[J]. 世界科技研究与发展,2000,22(4):41-44.

    Google Scholar

    [25] 何清华,袁碧华. 用声波检测大洋富钴结壳厚度的初步探讨[J]. 采矿技术,2003,3(2):93-95.

    Google Scholar

    [26] 金翔龙. 海洋地球物理研究与海底探测声学技术的发展[J]. 地球物理学进展,2007,22(4):1243-1249.

    Google Scholar

    [27] ANDERSON J T,VAN H D,KLOSER R,et al. Acoustic seabed classification:current practice and future directions[J]. ICES Journal of Marine Science,2008,65(6):1004-1011. doi: 10.1093/icesjms/fsn061

    CrossRef Google Scholar

    [28] 杨永,朱克超,邓希光,等. 声学勘探技术在大洋矿产资源勘查中的应用前景[J]. 地质论评,2013,59(1):947-948.

    Google Scholar

    [29] 张国祯. 富钴结壳矿区申请需要解决的两个重要问题[J]. 海洋地质动态,2005,21(10):19-22.

    Google Scholar

    [30] YEO I A,HOWARTH S A,SPEARMAN J,et al. Distribution of and hydrographic controls on ferromanganese crusts:Tropic Seamount,Atlantic[J]. Ore Geology Reviews,2019,114:103131. doi: 10.1016/j.oregeorev.2019.103131

    CrossRef Google Scholar

    [31] YANG Y,HE G W,LIU Y G,et al. Automated multi-scale classification of the terrain units of the Jiaxie Guyots and their mineral resource characteristics[J]. Acta Oceanologica Sinica,2022,41(7):129-139.

    Google Scholar

    [32] JOHNSON H P,HELFERTY M. The geological interpretation of side-scan sonar[J]. Reviews of Geophysics,1990,28(4):357-380. doi: 10.1029/RG028i004p00357

    CrossRef Google Scholar

    [33] ATALLAH L,SMITH P P. Automatic seabed classification by the analysis of side-scan sonar and bathymetric imagery[J]. IEE Proceedings-Radar,Sonar and Navigation,2004,151(5):327-336. doi: 10.1049/ip-rsn:20040279

    CrossRef Google Scholar

    [34] 徐建,郑玉龙,包更生,等. 基于声学深拖调查的海山微地形地貌研究:以马尔库斯-威克海岭一带的海山为例[J]. 海洋学研究,2011,29(1):17-24.

    Google Scholar

    [35] 冯强强,温明明,牟泽霖,等. 侧扫声呐在富钴结壳探测中的应用前景[J]. 地质学刊,2016,40(2):320-325.

    Google Scholar

    [36] LEE T G,HEIN J R,LEE K,et al. Sub-seafloor acoustic characterization of seamounts near the Ogasawara Fracture Zone in the Western Pacific using chirp(3-7 kHz) sub-bottom profiles[J]. Deep-Sea Research 1,2005,52(10):1932-1956. doi: 10.1016/j.dsr.2005.04.009

    CrossRef Google Scholar

    [37] 李守军,陶春辉,初凤友,等. 浅地层剖面在富钴结壳调查研究中的应用[J]. 海洋技术,2007,26(1):54-57.

    Google Scholar

    [38] MEL’ NIKOV M E,TUGOLESOV D D,PLETNEV S P. The structure of the incoherent sediments in the Ita Mai Tai Guyot(Pacific Ocean) based on geoacoustic profiling data[J]. Oceanology,2010,50(4):582-590. doi: 10.1134/S0001437010040144

    CrossRef Google Scholar

    [39] 何高文,梁东红,宋成兵,等. 浅地层剖面测量和海底摄像联合应用确定平顶海山富钴结壳分布界线[J]. 地球科学(中国地质大学学报),2005,35(4):509-512.

    Google Scholar

    [40] THORNTON B, ASADA A, URA T, et al. The development of an acoustic probe to measure the thickness of ferromanganese crusts[C]//Oceans 2010 IEEE, Sydney: IEEE, 2010: 1- 9.

    Google Scholar

    [41] THORNTON B,ASADA A,BODENMANN A,et al. Instruments and methods for acoustic and visual survey of manganese crusts[J]. IEEE Journal of Oceanic Engineering,2013,38(1):186-203. doi: 10.1109/JOE.2012.2218892

    CrossRef Google Scholar

    [42] NEETTIYATH U, THORNTON B, SANGEKAR M, et al. Automatic extraction of thickness information from sub-surface acoustic measurements of manganese crusts[C]//Oceans 2017 - Aberdeen, Aberdeen: IEEE, 2017: 1-7.

    Google Scholar

    [43] NEETTIYATH U, THORNTON B, SUGIMATSU H, et al. Automatic detection of buried Mn-crust layers using a sub-bottom acoustic probe from AUV based surveys[C]//Oceans 2022 - Chennai, Chennai: IEEE, 2022: 1-7.

    Google Scholar

    [44] 冯海泓,任晓寰,黄敏燕,等. 探测深海富钴结壳厚度的参量阵声呐系统关键技术研究[J]. 声学技术,2020,39(3):267-271.

    Google Scholar

    [45] HONG F,FENG H H,HUANG M Y,et al. China’s first demonstration of cobalt-rich manganese crust thickness measurement in the Western Pacific with a parametric acoustic probe[J]. Sensors,2019,19(19):4300. doi: 10.3390/s19194300

    CrossRef Google Scholar

    [46] 黄威,路晶芳,龚建明,等. 北极海域铁锰结核和结壳的分布与成因[J]. 海洋地质前沿,2020,36(7):11-16.

    Google Scholar

    [47] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 35572—2017, 大洋富钴结壳资源勘查规范[S]. 北京: 中国标准出版社.

    Google Scholar

    [48] HEIN J R. Cobalt-rich ferromanganese crusts: global distribution, composition, origin and research activities[M]//Minerals Other than Polymetallic Nodules of the International Seabed Area. Jamaica: International Seabed Authority, 2004: 188-256.

    Google Scholar

    [49] 张同伟,秦升杰,唐嘉陵,等. 深水多波束测深系统现状及展望[J]. 测绘通报,2018,5:82-85.

    Google Scholar

    [50] HUGHES CLARKE J E. Multibeam echosounders[M]//Submarine Geomorphology. Cham: Springer International Publishing, 2018: 25-41.

    Google Scholar

    [51] KODAMA T,MAEDA K. Interpretation of a backscattering image for the prospecting of cobalt-rich manganese crust[J]. The Journal of the Acoustical Society of America,1996,100(4):2667.

    Google Scholar

    [52] JOO J,KIM J,KO Y,et al. Characterizing geomorphological properties of Western Pacific seamounts for cobalt-rich ferromanganese crust resource assessment[J]. Economic and Environmental Geology,2016,49(2):121-134. doi: 10.9719/EEG.2016.49.2.121

    CrossRef Google Scholar

    [53] JOO J,KIM S S,CHOI J W,et al. Seabed mapping using shipboard multibeam acoustic data for assessing the spatial distribution of ferromanganese crusts on seamounts in the Western Pacific[J]. Minerals,2020,10(2):155. doi: 10.3390/min10020155

    CrossRef Google Scholar

    [54] YAO H Q,LIU Y G,YANG Y,et al. Assessment of acoustic backscatter intensity surveying on deep-sea ferromanganese crust:constraints from Weijia Guyot,Western Pacific Ocean[J]. China Geology,2021,4(2):288-298.

    Google Scholar

    [55] 曹金亮,刘晓东,张方生,等. DTA-6000声学深拖系统在富钴结壳探测中的应用[J]. 海洋地质与第四纪地质,2016,36(4):173-181.

    Google Scholar

    [56] MEREDYK S P,EDINGER E,PIPER D J W,et al. Enigmatic deep-water mounds on the Orphan Knoll,Labrador Sea[J]. Frontiers in Marine Science,2020,6:2296-7745.

    Google Scholar

    [57] 王斌贤,冯海泓,黄敏燕,等. 基于参量阵双通道信息的富钴结壳高精度测厚算法[J]. 声学技术,2021,40(4):464-469.

    Google Scholar

    [58] THORNTON B, BODENMANN A, ASADA A, et al. Acoustic and visual instrumentation for survey of manganese crusts using an underwater vehicle[C]//2012 Oceans, Hampton Roads: IEEE, 2012: 1-10.

    Google Scholar

    [59] NEETTIYATH U, THORNTON B, SANGEKAR M, et al. An AUV based method for estimating hectare-scale distributions of deep sea cobalt-rich manganese crust deposits[C]//Oceans 2019-Marseille, Marseille: IEEE, 2019: 1-6.

    Google Scholar

    [60] NEETTIYATH U,THORNTON B,SANGEKAR M,et al. Deep-Sea robotic survey and data processing methods for regional-scale estimation of manganese crust distribution[J]. IEEE Journal of Oceanic Engineering,2021,46(1):102-114. doi: 10.1109/JOE.2020.2978967

    CrossRef Google Scholar

    [61] 张旭. 结壳矿层声学测厚仪在大洋富钴结壳资源勘察中的应用[J]. 机电工程技术,2018,47(5):157-159.

    Google Scholar

    [62] HONG F,HUANG M Y,FENG H H,et al. First demonstration of recognition of manganese crust by deep-learning networks with a parametric acoustic probe[J]. Minerals,2022,12(2):249. doi: 10.3390/min12020249

    CrossRef Google Scholar

    [63] 程永寿. 西北太平洋海山富钴结壳资源评价和矿区圈定[D]. 青岛: 中国海洋大学, 2014.

    Google Scholar

    [64] 吴自银,郑玉龙,初凤友,等. 海底浅表层信息声探测技术研究现状及发展[J]. 地球科学进展,2005,20(11):58-65.

    Google Scholar

    [65] 温志坚,何志敏. 应用侧扫声呐的海底目标探测技术研究[J]. 科技创新导报,2017,14(22):28-29.

    Google Scholar

    [66] 郑晖. 多波束与侧扫声呐在水下探测中的应用[J]. 中国新技术新产品,2020,10:34-36.

    Google Scholar

    [67] STEEPLES D W,GREEN A G,MCEVILLY T V,et al. A workshop examination of shallow seismic reflection surveying[J]. The Leading Edge,1997,16(11):1641-1647. doi: 10.1190/1.1437543

    CrossRef Google Scholar

    [68] 杨国明,朱俊江,赵冬冬,等. 浅地层剖面探测技术及应用[J]. 海洋科学,2021,45(6):147-162.

    Google Scholar

    [69] RIOBLANC M. High productivity multi-sensor seabed mapping sonar for marine mineral resources exploration[C]//2013 IEEE/OES Acoustics in Underwater Geosciences Symposium, Rio de Janeiro: IEEE, 2013: 1-6.

    Google Scholar

    [70] FEZZANI R,ZERR B,MANSOUR A,et al. Fusion of swath bathymetric data:application to AUV rapid environment assessment[J]. IEEE Journal of Oceanic Engineering,2019,44(1):111-120. doi: 10.1109/JOE.2017.2773139

    CrossRef Google Scholar

    [71] 马晶鑫. 海底地形地貌与浅地层剖面一体化声学探测关键技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.

    Google Scholar

    [72] 刘经南,赵建虎. 多波束测深系统的现状和发展趋势[J]. 海洋测绘,2002,22(5):3-6.

    Google Scholar

    [73] SPIESS F N. Seafloor research and ocean technology[J]. Marine Technology Society Journal,1987,21(2):5-17.

    Google Scholar

    [74] 何林帮. 基于多波束和浅剖的海底浅表层沉积物分类关键问题研究[J]. 测绘学报,2016,45(12):1498-1512.

    Google Scholar

    [75] DEROOS B G, WILSON G, LYON F, et al. Technical survey and evaluation of underwater sensors and remotely operated vehicles[R]. Battelle Columbus: U.S. Coast Guard Research and Development Center, 1993.

    Google Scholar

    [76] 朱大奇,胡震. 深海潜水器研究现状与展望[J]. 安徽师范大学学报(自然科学版),2018,41(3):205-216.

    Google Scholar

    [77] 徐伟哲,张庆勇. 全海深潜水器的技术现状和发展综述[J]. 中国造船,2016,57(2):206-221.

    Google Scholar

    [78] 刘永刚,姚会强,邓希光. 蛟龙号HOV在海山结壳资源勘查中的应用[J]. 地质论评,2017,63(1):231-232.

    Google Scholar

    [79] 徐行. 我国海洋地球物理探测技术发展现状及展望[J]. 华南地震,2021,41(2):1-12.

    Google Scholar

    [80] LI S,CHEN J P,LIU C. Overview on the development of intelligent methods for mineral resource prediction under the background of geological big data[J]. Minerals,2022,12:616.

    Google Scholar

    [81] 刘智慧,张泉灵. 大数据技术研究综述[J]. 浙江大学学报(工学版),2014,48(6):957-972.

    Google Scholar

    [82] 张雪薇,韩震,周玮辰,等. 智慧海洋技术研究综述[J]. 遥感信息,2020,35(4):1-7.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(1)

Article Metrics

Article views(759) PDF downloads(61) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint