2024 Vol. 40, No. 2
Article Contents

ZHAO Hanqing, LI Chao, GUO Cheng, YUE Honglin, ZHANG Zhenglong. Geomorphology of channel sandbodies in fluvially dominated shallow water delta front: taking the Lower Member of the Minghuazhen Formation in BZ34 Oilfield of the Huanghekou Sag, Bohai Bay Basin as an example[J]. Marine Geology Frontiers, 2024, 40(2): 20-27. doi: 10.16028/j.1009-2722.2023.019
Citation: ZHAO Hanqing, LI Chao, GUO Cheng, YUE Honglin, ZHANG Zhenglong. Geomorphology of channel sandbodies in fluvially dominated shallow water delta front: taking the Lower Member of the Minghuazhen Formation in BZ34 Oilfield of the Huanghekou Sag, Bohai Bay Basin as an example[J]. Marine Geology Frontiers, 2024, 40(2): 20-27. doi: 10.16028/j.1009-2722.2023.019

Geomorphology of channel sandbodies in fluvially dominated shallow water delta front: taking the Lower Member of the Minghuazhen Formation in BZ34 Oilfield of the Huanghekou Sag, Bohai Bay Basin as an example

  • The Lower Member of the Neogene Minghuazhen Formation (N1ml) is the main oil-bearing sand body unit in the BZ34 Oilfield in Huanghekou Sag, Bohai Bay Basin, North China, in which delta front deposits in fluvially dominated shallow waters were developed. To better characterize the structural characteristics and distribution of the front sand bodies, taking the second oil unit of N1ml as an example, the sedimentary types, geomorphological structures, and depositional models of the sand body were analyzed based on the data from coring, seismic profiling, and logging. Results show that the sand bodies are dominated by underwater distributary channels in shallow water delta front. According to the logging curves and overlapping of the sand bodies, four channel types were recognized: massive incised river channel, layered overlapping channel, layered isolated channel, and finger-shaped isolated channel. The distribution and genesis of the sand bodies were affected mainly by paleotopography, sediment supply rate, base level cycle, and paleoclimate. The underwater distributary channel deposits in the BZ34 Oil Field are characteristic of incisive superposition in vertical direction and meandering patchy distribution in horizontal, which is similar to the modern case of fluvially dominated shallow water delta channels in Poyang Lake, South China. This study provided a guidance for infill adjustment and potential tapping in later stage for the remaining oil in BZ34 Oilfield.

  • 加载中
  • [1] 朱伟林,李建平,周心怀,等. 渤海新近系浅水三角洲沉积体系与大型油气田勘探[J]. 沉积学报,2008,26(4):575-582. doi: 10.14027/j.cnki.cjxb.2008.04.016

    CrossRef Google Scholar

    [2] 徐长贵,姜培海,武法东,等. 渤中坳陷上第三系三角洲的发现、沉积特征及其油气勘探意义[J]. 沉积学报,2002,20(4):588-594. doi: 10.3969/j.issn.1000-0550.2002.04.009

    CrossRef Google Scholar

    [3] 吴小红,吕修祥,周心怀,等. BZ34油区明下段浅水三角洲沉积特征及其油气勘探意义[J]. 东北石油大学学报,2009,33(5):32-36,40. doi: 10.3969/j.issn.2095-4107.2009.05.008

    CrossRef Google Scholar

    [4] 吴穹螈,穆朋飞,孙广义,等. 浅水三角洲分流砂坝精细刻画新方法[J]. 断块油气田,2020,27(2):176-181.

    Google Scholar

    [5] 楼章华,卢庆梅,蔡希源,等. 湖平面升降对浅水三角洲前缘砂体形态的影响[J]. 沉积学报,1998,16(4):27-31. doi: 10.14027/j.cnki.cjxb.1998.04.005

    CrossRef Google Scholar

    [6] 赵汉卿,张建民,李栓豹,等. 长周期基准面下降半旋回内浅水三角洲沉积演化规律及其在开发中的应用:以渤海A油田明下段为例[J]. 海洋地质与第四纪地质,2018,38(5):71-79.

    Google Scholar

    [7] 宋光永,朱超,李森明,等. 油砂山地区浅水三角洲-滨浅湖沉积及其对储层的控制[J]. 断块油气田,2018,25(2):146-150.

    Google Scholar

    [8] 邹才能,赵文智,张兴阳,等. 大型敞流坳陷湖盆浅水三角洲与湖盆中心砂体的形成与分布[J]. 地质学报,2008,82(6):813-825. doi: 10.3321/j.issn:0001-5717.2008.06.011

    CrossRef Google Scholar

    [9] 刘桂珍,高伟,张丹丹,等. 姬塬地区长81亚油层组浅水型三角洲砂体结构及成因[J]. 岩性油气藏,2019,31(2):16-23. doi: 10.12108/yxyqc.20190203

    CrossRef Google Scholar

    [10] 张家强,李士祥,周新平,等. 志丹地区长82砂层组缓坡浅水三角洲前缘砂体发育模式及成因[J]. 岩性油气藏,2020,32(1):36-50. doi: 10.12108/yxyqc.20200105

    CrossRef Google Scholar

    [11] 任双坡,姚光庆,毛文静. 三角洲前缘水下分流河道薄层单砂体成因类型及其叠置模式:以古城油田泌浅10区核三段Ⅳ-Ⅵ油组为例[J]. 沉积学报,2016,34(3):582-593. doi: 10.14027/j.cnki.cjxb.2016.03.016

    CrossRef Google Scholar

    [12] OLARIU C,BHATTACHARYA J P. Terminal distributary channels and delta front architecture of river-dominated delta systems[J]. Journal of Sedimentary Research,2006,76(2):212-233.

    Google Scholar

    [13] 张兴强,尹太举,宋亚开,等. 叠覆式浅水三角洲储层结构分析:以东濮凹陷文79南断块沙二下亚段为例[J]. 断块油气田,2019,26(5):555-560.

    Google Scholar

    [14] LEMONS D R,CHAN M A. Facies architecture and sequence stratigraphy of fine-grained lacustrine deltas along the eastern margin of late Pleistocene Lake Bonneville,northern Utah and southern Idaho[J]. AAPG Bulletin,1999,83(4):635-665.

    Google Scholar

    [15] 涂丹凤,牛成民,张新涛,等. 黄河口凹陷BZ34-1复杂断块油藏滚动勘探实践[J]. 石油地质与工程,2015,29(5):67-70. doi: 10.3969/j.issn.1673-8217.2015.05.018

    CrossRef Google Scholar

    [16] 沈孝秀,张婕茹,缪飞飞,等. 黄河口凹陷明化镇组下段储层特征及其对产能的影响[J]. 石油地质与工程,2020,34(1):55-60. doi: 10.3969/j.issn.1673-8217.2020.01.012

    CrossRef Google Scholar

    [17] 加东辉,吴小红,赵利昌,等. 渤中25-1 南油田浅水三角洲各微相粒度特征分析[J]. 沉积与特提斯地质,2005,25(4):87-94. doi: 10.3969/j.issn.1009-3850.2005.04.015

    CrossRef Google Scholar

    [18] 朱筱敏,赵东娜,曾洪流,等. 松辽盆地齐家地区青山口组浅水三角洲沉积特征及其地震沉积学响应[J]. 沉积学报,2013,31(5):889-897. doi: 10.14027/j.cnki.cjxb.2013.05.009

    CrossRef Google Scholar

    [19] 庞小军,王清斌,解婷,等. 黄河口凹陷北缘古近系物源及其对优质储层的控制[J]. 岩性油气藏,2020,32(2):1-13.

    Google Scholar

    [20] 邓鹏,孙善磊,黄鹏年. 气候变化对鄱阳湖流域径流的影响[J]. 河海大学学报(自然科学版),2020,48(1):39-45. doi: 10.3876/j.issn.1000-1980.2020.01.006-

    CrossRef Google Scholar

    [21] 秦润森,岳红林,周凤军,等. 河控浅水三角洲前缘席状砂沉积特征及沉积模式探讨:以黄河口凹陷渤中34地区明下段为例[J]. 沉积学报,2020,38(2):429-439.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(1)

Article Metrics

Article views(273) PDF downloads(123) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint