2024 Vol. 40, No. 2
Article Contents

LI Bingying, TU Qicui, LIU Jiang, LOU Min, ZHANG Jiajia, HUANG Xin, WANG Lamei. A new method of rock physics modeling and its application in low permeability reservoirs of Z Gasfield, East Sea Basin[J]. Marine Geology Frontiers, 2024, 40(2): 59-67. doi: 10.16028/j.1009-2722.2023.009
Citation: LI Bingying, TU Qicui, LIU Jiang, LOU Min, ZHANG Jiajia, HUANG Xin, WANG Lamei. A new method of rock physics modeling and its application in low permeability reservoirs of Z Gasfield, East Sea Basin[J]. Marine Geology Frontiers, 2024, 40(2): 59-67. doi: 10.16028/j.1009-2722.2023.009

A new method of rock physics modeling and its application in low permeability reservoirs of Z Gasfield, East Sea Basin

More Information
  • Low-permeability reservoirs have complex pore structure characteristics for which conventional petrophysical modeling methods are not suitable for detection. In addition, physical properties among different layers of low-permeability reservoirs vary considerably, so it is difficult to use unified petrophysical model to characterize the relationship between reservoir parameters and elastic parameters. We proposed a new technical approach to stratified rock physics modeling of low permeability reservoirs: for medium-low porosity and medium-low permeability reservoirs, the fluid uniform saturation model based on DEM theory was adopted; for extra-low porosity and extra-low permeability reservoirs, the fluid non-uniform saturation model based on KT theory was adopted. The predicted P-wave and S-wave velocities based on stratified rock physical modeling were in good agreement with the real logging data, which verified the reliability of the method. Based on the accurate petrophysical models, the laws of elastic parameters variations with shale content, porosity, and pore shape were further analyzed, to guide the prediction of lithology and "sweet spot" in low permeability reservoir.

  • 加载中
  • [1] 欧阳健. 加强岩石物理研究提高油气勘探效益[J]. 石油勘探与开发,2001,28(2):1-5.

    Google Scholar

    [2] 马淑芳,韩大匡,甘利灯,等. 地震岩石物理模型综述[J]. 地球物理学进展,2010,25(2):460-471.

    Google Scholar

    [3] BATZLE M,WANG Z. Seismic properties of pore fluids[J]. Geophysics,1992,57(1):1396-1468.

    Google Scholar

    [4] 印兴耀,刘欣欣. 储层地震岩石物理建模研究现状与进展[J]. 石油物探,2016,55(3):309-325.

    Google Scholar

    [5] 姜仁,曾庆才,黄家强,等. 岩石物理分析在叠前储层预测中的应用[J]. 石油地球物理勘探,2014,49(2):322-328.

    Google Scholar

    [6] 刘军,刘杰,曹均,等. 基于岩石物理实验的储层与孔隙流体敏感参数特征:以珠江口盆地东部中—深层碎屑岩储层为例[J]. 石油学报,2019,40(S1):197-205.

    Google Scholar

    [7] 张益明,秦小英,郭智奇,等. 针对致密砂岩气储层复杂孔隙结构的岩石物理模型及其应用[J]. 吉林大学学报(地球科学版),2021,51(3):927-939.

    Google Scholar

    [8] 王震宇,刘俊州. 岩石物理建模技术在致密砂岩储层预测中的应用:以鄂尔多斯盆地北部H区块为例[J]. 物探化探计算技术,2019,41(1):34-40.

    Google Scholar

    [9] 陈昌. 叠前地震反演在清水地区砂砾岩优质储层预测中的应用[J]. 海洋地质前沿,2017,33(6):59-64.

    Google Scholar

    [10] 肖张波,雷永昌,邱欣卫,等. 泊松阻抗属性在陆丰南古近系低渗砂岩储层“甜点”识别中的应用[J]. 海洋地质前沿,2022,38(6):70-77.

    Google Scholar

    [11] 姜雨,涂齐催. 利用岩石物理分析及叠前反演技术解决致密砂岩气储层预测问题:以西湖凹陷A区块为例[J]. 海洋地质前沿,2015,31(11):36-42.

    Google Scholar

    [12] 印兴耀,刘倩. 致密储层各向异性地震岩石物理建模及应用[J]. 中国石油大学学报(自然科学版),2016,40(2):52-58.

    Google Scholar

    [13] 张龙海,刘忠华,周灿灿,等. 低孔低渗储集层岩石物理分类方法的讨论[J]. 石油勘探与开发,2008,35(6):763-768.

    Google Scholar

    [14] 李芳,邓勇,胡林,等. 地球物理技术预测莺歌海盆地低孔低渗储层孔隙度[J]. 地质科技通报,2022,41(4):84-90.

    Google Scholar

    [15] 杨志芳,曹宏,姚逢昌,等. 复杂孔隙结构储层地震岩石物理分析及应用[J]. 中国石油勘探,2014,19(3):50-56.

    Google Scholar

    [16] BIOT M A. Theory of propagation of elastic waves in a fluid saturated porous solid[J]. Journal of the Acoustical Society of America,1956,28(2):168-191. doi: 10.1121/1.1908239

    CrossRef Google Scholar

    [17] XU S,WHITE R. A new velocity model for clay-sand mixtures[J]. Geophysical prospecting,1995,43(1):91-118. doi: 10.1111/j.1365-2478.1995.tb00126.x

    CrossRef Google Scholar

    [18] MAVKO G, MUKERJI T, DVORKIN J. The rock physics handbook: tools for seismic analysis of porous media[M]. Cambridge: Cambridge University Press, 2009.

    Google Scholar

    [19] KUSTER G T,TOKSÖZ M N. Velocity and attenuation of seismic waves in two-phase media:part I. theoretical formulations[J]. Geophysics,1974,39(5):587-606. doi: 10.1190/1.1440450

    CrossRef Google Scholar

    [20] BERRYMAN J G. Long‐wavelength propagation in composite elastic media I. spherical inclusions[J]. The Journal of the Acoustical Society of America,1980,68:1809-1819. doi: 10.1121/1.385171

    CrossRef Google Scholar

    [21] GASSMANN F. Elastic waves through a packing of spheres[J]. Geophysics,1951,16(4):673-685. doi: 10.1190/1.1437718

    CrossRef Google Scholar

    [22] CIZ R,SHAPIRO S A. Generalization of Gassmann’s equations for porous media saturated with a solid material[J]. Geophysics,2007,72(6):75-79. doi: 10.1190/1.2772400

    CrossRef Google Scholar

    [23] 印兴耀,刘欣欣,曹丹平. 基于Biot相洽理论的致密砂岩弹性参数计算方法[J]. 石油物探,2013,52(5):445-451.

    Google Scholar

    [24] HILL R. The elastic behavior of crystalline aggregate[J]. Proceedings of the Physical Society,1952,65:349-354.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(310) PDF downloads(91) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint