Citation: | ZUO Shuhua, ZHAO Dezhao, XIE Hualiang, ZHAO Zhangyi, YANG Hua. Evolution in river regime in the South Passage of the Yangtze Estuary under new situation[J]. Marine Geology Frontiers, 2024, 40(1): 44-54. doi: 10.16028/j.1009-2722.2022.311 |
With the sharp decrease of sediment flow in the Yangtze River basin, the construction of estuary foraging projects, the strengthening of ecological environmental protection, and the efficient utilization of navigation environment, the Yangtze River estuary is facing a new round of adjustment. Taking the evolution of the South Passage of the Yangtze River Estuary as the research object, the recent river regime changes of the South Passage were studied based on the underwater topography data and the channel water depth data of the South Passage in the past 10 years, and the effects of the first phase of the South Passage regulation project were discussed. Results show that the main channel of the South Passage presented a scouring trend as a whole from 2010 to 2018, and the tidal creek at the head of Jiangyanan Shoal developed and the tail of Jiangyanan Shoal were scoured down. The tidal creek at the head of Jiangyanan Shoal has changed from scour to siltation environment from 2018 to the present, while the scour and siltation situation in other areas remains unchanged. The shape of the main channel in the South Passage section is generally stable. Under the background of the overall erosion of the main channel, the "barrier gate sand" was gradually flattened. Coupled with the role of the first phase of the South Passage regulation project, the volume of the area in the depth greater than 6 m has been significantly expanded and maintained good stability. The recent change of the South Passage regime is the comprehensive outcome of the influences of water and sediment inflows, and estuarine natural and human activities. The first phase of South Passage regulation project has played an important role in the recent topographic changes in Jiangyanan Shoal. The project effectively controlled the river regime of Jiangyanan Shoal and restrayed the local scour development trend of Jiangyanan Shoal, which is conducive to stabilizing the north boundary of the South Passage channel.
[1] | 陈吉余, 沈焕庭, 恽才兴, 等. 长江河口动力过程和地貌演变[M]. 上海: 上海科学技术出版社, 1988. |
[2] | 赵德招,张俊勇. 长江口南槽航道进一步开发的基本思路及框架[J]. 水运工程,2016(3):98-94. doi: 10.16233/j.cnki.issn1002-4972.2016.03.017 |
[3] | 金鏐. 长江口深水航道治理前期研究成果[J]. 港口工程,1998(2):5-12. |
[4] | 窦国仁. 长江口深水航道泥沙回淤问题的分析[J]. 水运工程,1999(10):36-39. doi: 10.16233/j.cnki.issn1002-4972.1999.10.009 |
[5] | 范期锦. 长江口深水航道治理工程的创新[J]. 中国工程科学,2004,6(12):13-26. doi: 10.3969/j.issn.1009-1742.2004.12.003 |
[6] | 赵捷,何青,虞志英,等. 长江口北槽深水航道回淤泥沙来源分析[J]. 泥沙研究,2014,39(5):18-25. doi: 10.16239/j.cnki.0468-155x.2014.05.006 |
[7] | 左书华,李松喆,韩志远,等. 长江口北槽河槽地形变化及深水航道回淤特征分析[J]. 水道港口,2015,36(1):1-7. doi: 10.3969/j.issn.1005-8443.2015.01.001 |
[8] | 孙继涛,张庆河,严冰,等. 盐度层化对长江口水动力的影响[J]. 水道港口,2015,36(2):93-104. doi: 10.3969/j.issn.1005-8443.2015.02.001 |
[9] | 应铭,季岚,周海. 长江口北槽12.5 m深水航道回淤的物理过程[J]. 水运工程,2017(11):77-86. doi: 10.3969/j.issn.1002-4972.2017.11.015 |
[10] | 沈金山,朱珍妹,张新琴. 长江口南槽拦门沙的成因和演变[J]. 海洋与湖沼,1983,14(6):582-590. |
[11] | 杨世伦,贺松林,谢文辉. 长江口九段沙的形成演变及其与南北槽发育的关系[J]. 海洋工程,1998,16(4):56-66. doi: 10.16483/j.issn.1005-9865.1998.04.008 |
[12] | 李九发,万新宁,应铭,等. 长江河口九段沙沙洲形成和演变过程研究[J]. 泥沙研究,2006,31(6):44-49. doi: 10.3321/j.issn:0468-155X.2006.06.008 |
[13] | 戴志军,陈吉余,程和琴,等. 南汇边滩的沉积特征和沉积物输运趋势[J]. 长江流域资源与环境,2005,14(6):735-739. doi: 10.3969/j.issn.1004-8227.2005.06.013 |
[14] | 左书华,时连强. 南汇嘴潮滩沉积物粒度特征研究[J]. 水道港口,2008,29(2):18-23. |
[15] | 左书华,李蓓,杨华. 长江口南汇嘴海域表层悬浮泥沙分布和运动遥感分析[J]. 水道港口,2010,31(5):88-93. |
[16] | 左书华,李蓓,张征,等. 长江口南汇嘴潮滩围垦工程潮流数学模型研究[J]. 中国港湾建设,2017,37(7):8-12. |
[17] | CAO D F,SHEN Y M,SU M R,et al. Numerical simulation of hydrodynamic environment effects of the reclamation project of Nanhui tidal flat in Yangtze Estuary[J]. Journal of Hydrodynamics,2019,31(3):603-613. doi: 10.1007/s42241-019-0006-4 |
[18] | XIE X P,WANG Z Y,MELCHING C S. Formation and evolution of the Jiuduansha Shoal over the past 50 years[J]. Journal of Hydraulic Engineering,2009,135(9):741-754. doi: 10.1061/(ASCE)0733-9429(2009)135:9(741) |
[19] | 谢华亮,戴志军,李为华,等. 长江口南北槽分流口动力地貌过程研究[J]. 应用海洋学学报,2014,33(2):4-12. |
[20] | 林益帆,戴志军,李为华,等. 长江口南北槽分流口洪季水沙变化过程研究[J]. 海洋学报,2015,37(3):116-127. |
[21] | 戴志军,韩震,恽才兴. 长江口南槽沉积物特征和运移趋势[J]. 海洋湖沼通报,2005,7(2):72-78. doi: 10.3969/j.issn.1003-6482.2005.02.013 |
[22] | 唐建华,何青,刘玮祎,等. 长江口南槽沉积物粒度的分形特性分析[J]. 泥沙研究,2007,32(3):50-56. doi: 10.3321/j.issn:0468-155X.2007.03.009 |
[23] | 郭小斌,李九发,李占海,等. 长江河口南槽近期滩槽水沙输移特性分析[J]. 人民长江,2012,43(11):1-5. doi: 10.3969/j.issn.1001-4179.2012.11.001 |
[24] | ZHANG L F,YANG Z S,ZHANG F,et al. Longitudinal residual circulation in the South Passage of Yangtze Estuary:Combined influences from runoff,tide and bathymetry|[J]. Science China Earth Sciences,2021,64(12):2129-2143. doi: 10.1007/s11430-021-9813-7 |
[25] | 谢华亮,戴志军,左书华,等. 1959—2013 年长江河口南槽动力地貌演变过程[J]. 海洋工程,2015,33(5):51-59. |
[26] | WEI W,DAI Z J,MEI X F,et al. Shoal morphodynamics of the Changjiang (Yangtze) Estuary:Influences from river damming,estuarine hydraulic engineering and reclamation projects[J]. Marine Geology,2017,386:32-43. doi: 10.1016/j.margeo.2017.02.013 |
[27] | 朱治,张学军,沈雨生. 长江口南槽航道透水梯形结构整治建筑物水动力特性研究[J]. 水道港口,2020,41(4):380-387. doi: 10.3969/j.issn.1005-8443.2020.04.002 |
[28] | 李保,付桂,杜亚南. 长江口近期来沙量变化及其对河势的影响分析[J]. 水运工程,2012(7):129-134. doi: 10.3969/j.issn.1002-4972.2012.07.025 |
[29] | 窦希萍,缴健,储鏖,等. 长江口水沙变化与趋势预测[J]. 海洋工程,2020,38(4):2-10. doi: 10.16483/j.issn.1005-9865.2020.04.001 |
[30] | 张晓鹤,李九发,朱文武,等. 近期长江河口冲淤演变过程研究[J]. 海洋学报,2015,37(3):134-143. |
[31] | 赵德招,刘杰,张俊勇,等. 长江口河势近 15 年变化特征及其对河口治理的启示[J]. 长江科学院院报,2014,31(7):1-6,20. doi: 10.3969/j.issn.1001-5485.2014.07.001 |
[32] | 中交上海中交上海航道勘察设计研究院有限公司. 长江口南槽航道治理一期工程工程可行性研究报告[R]. 上海: 中交上海中交上海航道勘察设计研究院有限公司, 2018. |
[33] | 刘杰,程海峰,韩露,等. 流域减沙对长江口典型河槽及邻近海域演变的影响[J]. 水科学进展,2017,28(2):249-256. doi: 10.14042/j.cnki.32.1309.2017.02.010 |
[34] | 李九发, 蒋陈娟, 刘启贞, 等. 长江河口水沙输移与河床演变[M]. 北京: 科学出版社, 2019. |
[35] | 恽才兴. 图说长江河口演变[M]. 北京: 海洋出版社, 2010. |
[36] | 交通运输部天津水运工程科学研究所. 长江口南槽航道治理一期工程实施效果评价研究报告[R]. 天津: 交通运输部天津水运工程科学研究所, 2021. |
[37] | 刘红, 应铭, 张华, 等. 工程条件下长江口南槽自适应过程[C]//第十五届中国海洋(岸)工程学术讨论会论文集, 北京: 海洋出版社, 2011. |
[38] | 左书华,杨春松,付桂,等. 长江口入海水沙通量变化及其影响分析[J]. 海洋地质前沿,2022,38(11):56-64. doi: 10.16028/j.1009-2722.2022.076 |
[39] | DAI Z J,CHU A,LI W H,et al. Has suspended sediment concentration near the mouth bar of the Yangtze (Changjiang) Estuary been declining in recent years?[J]. Journal of Coastal Research,2013,29(4):809-818. |
[40] | YANG Y P,LI Y T,SUN Z H,et al. Suspended sediment load in the turbidity maximum zone at the Yangtze River Estuary:The trends and causes[J]. Journal of Geographical Sciences,2014,24(1):129-142. doi: 10.1007/s11442-014-1077-3 |
Map of the Yangtze Estuary and the South Passage
Topographic erosion and silting changes in the Yangtze Estuary from 1958 to 2002[35]
Topographic erosion and siltation changes in the South Passage from 1997 to 2010
Variation of the 5 m isobath in the South Passage
Change in length of Jiangya Ditch and Jiangyanan Shoal tail
Variation of 10-m isobath in the South Passage
Distribution of bed erosion and siltation in the South Passage from 2010 to 2020
Variation of water depth in the section of the South Passage
Variation of water depth in longitudinal section of the South Passage
Morphological changes of the region in water depth greater than 6 m from 2016 to 2020
Area change of the region in water depthgreater than 6 m from 2016 to 2020
Variation of enveloped area of 2 m and 5 m isobaths in the Jiangyanan Shoal
Variation of siltation volume along the 6-m channel in South Passage during the trial operation period
Monthly siltation cumulative changes of the 6-m channel in the South Passage during the trial operation period
Discharge of water and sediment in the Datong station during 1960—2020