2023 Vol. 39, No. 11
Article Contents

WANG Ping, WANG Feilong, CHEN Rongtao. Paleoclimate, provenance, and tectonic setting of the First Member of the Paleogene Shahejie Formation in the southern slope of Huanghekou Sag[J]. Marine Geology Frontiers, 2023, 39(11): 63-75. doi: 10.16028/j.1009-2722.2022.263
Citation: WANG Ping, WANG Feilong, CHEN Rongtao. Paleoclimate, provenance, and tectonic setting of the First Member of the Paleogene Shahejie Formation in the southern slope of Huanghekou Sag[J]. Marine Geology Frontiers, 2023, 39(11): 63-75. doi: 10.16028/j.1009-2722.2022.263

Paleoclimate, provenance, and tectonic setting of the First Member of the Paleogene Shahejie Formation in the southern slope of Huanghekou Sag

  • The major and trace elements in clastic sedimentary rocks record abundant geochemical information, and can be used to reconstruct paleoclimate, provenance, and tectonic setting. Geochemical analysis of inorganic element in clastic sedimentary rocks of the first member of the Paleogene Shahejie Formation (E1s1) in the southern slope of Huanghekou Sag was conducted, and the paleoclimate, provenance and tectonic setting of the Es1 were discussed. Th/Sc-Zr/Sc diagram and index of compositional variability (ICV) indicate that the source of the Es1 in the study area was the first deposition unit after weathering of the parent rocks, and the compositional maturity was relatively high. The corrected chemical index of alteration (CIAcorr) and plagioclase index of alteration (PIA) indicate that the source of the Es1 underwent moderate weathering, and the sedimentary period was warm and humid paleoclimatic conditions. Major, trace, and rare earth elements show that the provenance of Es1 is characterized by upper crust derived felsic igneous rocks, featuring obvious negative Eu anomaly, and the materials of provenance was mainly derived from Precambrian granitoids and some intermediate-basic mixture sources. The tectonic background of the provenance area was active continental margin and continental island arc. The complex tectonic background was related to the subduction of the Western Pacific plate to the East Asian continent.

  • 加载中
  • [1] ARMSTRONG-ALTRIN J S,MACHAIN-CASTILLO M L,ROSALES-HOZ L,et al. Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis[J]. Continental Shelf Research,2015,95:15-26. doi: 10.1016/j.csr.2015.01.003

    CrossRef Google Scholar

    [2] BHATIA M R. Plate tectonics and geochemical composition of sandstones[J]. The Journal of Geology,1983,91(6):611-627. doi: 10.1086/628815

    CrossRef Google Scholar

    [3] 邵磊,刘志伟,朱伟林. 陆源碎屑岩地球化学在盆地分析中的应用[J]. 地学前缘,2000,7(3):297-304.

    Google Scholar

    [4] 李乐,姚光庆,刘永河,等. 塘沽地区沙河街组下部含云质泥岩主微量元素地球化学特征及地质意义[J]. 地球科学(中国地质大学学报),2015,40(9):1480-1496.

    Google Scholar

    [5] MCLENNAN S M,HEMMING S,MCDANIEL D K,et al. Geochemical approaches to sedimentation,provenance,and tectonics[J]. Special Papers-Geological Society of America,1993,284:21-40.

    Google Scholar

    [6] CULLERS R L. The controls on the major and trace element variation of shales,siltstones,and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas,USA[J]. Geochimica et Cosmochimica Acta,1994,58(22):4955-4972. doi: 10.1016/0016-7037(94)90224-0

    CrossRef Google Scholar

    [7] CULLERS R L. The controls on the major-and trace-element evolution of shales,siltstones and sandstones of Ordovician to tertiary age in the Wet Mountains region,Colorado,U. S. A.[J]. Chemical Geology,1995,123(1):107-131.

    Google Scholar

    [8] 杜晓峰,加东辉,王启明,等. 盆内局部物源体系及其油气勘探意义:以渤海海域古近系为例[J]. 中国海上油气,2017,29(4):19-27.

    Google Scholar

    [9] 陈延芳,杜晓峰,王清斌,等. 渤海黄河口东洼古地貌对沉积相的控制作用[J]. 石油地质与工程,2020,34(3):20-23.

    Google Scholar

    [10] 李森. 渤海湾盆地黄河口凹陷古近系混积岩“源-汇-岩-储”一体化优质储层预测[D]. 北京: 中国地质大学, 2020. DOI: 10.27492/d.cnki.gzdzu.2020.000042.

    Google Scholar

    [11] 王改卫,张海义,郭轩,等. 黄河口凹陷古近系地层结构新认识与勘探潜力评价[J]. 油气地质与采收率,2020,27(5):1-12. doi: 10.13673/j.cnki.cn37-1359/te.2020.05.001

    CrossRef Google Scholar

    [12] 周晓光,黄晓波,马正武,等. 渤海海域莱北低凸起隐性“逆冲物源”发育特征及地质意义[J]. 西安石油大学学报(自然科学版),2020,35(4):26-29,46.

    Google Scholar

    [13] 付兆辉,秦伟军,李敏. 渤海湾盆地垦东凸起构造演化及对沉积的控制作用[J]. 石油地质与工程,2011,25(4):7-10. doi: 10.3969/j.issn.1673-8217.2011.04.003

    CrossRef Google Scholar

    [14] 朱红涛,刘依梦,王永利,等. 渤海湾盆地黄河口凹陷BZ34-9区带火山岩三维刻画及火山喷发期次[J]. 地球科学(中国地质大学学报),2014,39(9):1309-1316.

    Google Scholar

    [15] 王昕,柴永波,姚佳,等. 渤中34构造古近系受玄武岩控制砂岩储层成岩相展布特征及发育模式[J]. 中国海上油气,2017,29(2):9-17.

    Google Scholar

    [16] 薛永安,杨海风,徐长贵. 渤海海域黄河口凹陷斜坡带差异控藏作用及油气富集规律[J]. 中国石油勘探,2016,21(4):65-74.

    Google Scholar

    [17] 张新涛, 周心怀, 牛成民, 等黄河口凹陷古近纪构造坡折带对沉积体系的控制[J]. 地质论评, 2014, 60(2): 332-338.

    Google Scholar

    [18] 姚佳,王昕,王清斌,等. 黄河口凹陷BZ34区古近系沙一二段储集层成岩相与有利储层预测[J]. 现代地质,2016,30(6):1339-1347.

    Google Scholar

    [19] 赵振华. 微量元素地球化学原理[M]. 北京: 科学出版社, 2016.

    Google Scholar

    [20] TAYLOR S R,MCLENNAN S M. The continental crust:its composition and evolution[J]. The Journal of Geology,1985,94(4):57-72.

    Google Scholar

    [21] BOYNTON W V. Cosmochemistry of the rare earth elements: meteorite studies[M]//HENDERSON P. Rare Earth Element Geochemistry. Am-sterdam: Elsevier, 1984: 63-114.

    Google Scholar

    [22] HERRON M M. Geochemical classification of terrigenous sands and shales from core or log data[J]. Journal of Sedimentary Research,1988,58(5):820-829.

    Google Scholar

    [23] WEDEPOHL K H. Handbook of Geochemistry[M]. Berlin: Springer, 1969: 59-60.

    Google Scholar

    [24] WOLLAST R,CHOU L. Surface reactions during the early stages of weathering of albite[J]. Geochimica et Cosmochimica Acta,1992,56(8):3113-3121. doi: 10.1016/0016-7037(92)90292-Q

    CrossRef Google Scholar

    [25] NESBITT H W,YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature,1982,299(5885):715-717. doi: 10.1038/299715a0

    CrossRef Google Scholar

    [26] PANAHI A,YOUNG G M,RAINBIRD R H. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie,Québec,Canada[J]. Geochimica et Cosmochimica Acta,2000,64(13):2199-2220. doi: 10.1016/S0016-7037(99)00420-2

    CrossRef Google Scholar

    [27] FEDO C M,NESBITT H W,YOUNG G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols,with implications for paleoweathering conditions and provenance[J]. Geology,1995,23(10):921-924. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2

    CrossRef Google Scholar

    [28] 郭望,张卫刚,李玉宏,等. 柴北缘大煤沟组七段页岩地球化学特征对中侏罗世晚期物源及风化作用的指示及意义[J]. 沉积学报,2020,38(3):676-686.

    Google Scholar

    [29] JIAN X,GUAN P,ZHANG W,et al. Geochemistry of Mesozoic and Cenozoic sediments in the northern Qaidam Basin,northeastern Tibetan Plateau:implications for provenance and weathering[J]. Chemical Geology,2013,360:74-88.

    Google Scholar

    [30] ARMSTRONG-ALTRIN J S,LEE Y I,VERMA S P,et al. Geochemistry of sandstones from the upper Miocene Kudankulam Formation,Southern India:implications for provenance,weathering,and tectonic setting[J]. Journal of Sedimentary Research,2004,74(2):285-297. doi: 10.1306/082803740285

    CrossRef Google Scholar

    [31] 徐小涛,邵龙义. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素[J]. 古地理学报,2018,20(3):515-522.

    Google Scholar

    [32] COX R,LOWE D R,CULLERS R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta,1995,59(14):2919-2940. doi: 10.1016/0016-7037(95)00185-9

    CrossRef Google Scholar

    [33] 冯连君,储雪蕾,张启锐,等. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J]. 地学前缘,2003,10(4):539-544.

    Google Scholar

    [34] ROSER B P,KORSCH R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data[J]. Chemical geology,1988,67(1/2):119-139.

    Google Scholar

    [35] SHAW D M. A review of K-Rb fractionation trends by covariance analysis[J]. Geochimica et Cosmochimica Acta,1968,32(6):573-601. doi: 10.1016/0016-7037(68)90050-1

    CrossRef Google Scholar

    [36] FLOYD P A,LEVERIDGE B E. Tectonic environment of the Devonian Gramscatho basin,south Cornwall:framework mode and geochemical evidence from turbiditic sandstones[J]. Journal of the Geological Society,1987,144(4):531-542. doi: 10.1144/gsjgs.144.4.0531

    CrossRef Google Scholar

    [37] GU X X,LIU J M,ZHENG M H,et al. Provenance and tectonic setting of the Proterozoic turbidites in Hunan,South China:geochemical evidence[J]. Journal of Sedimentary Research,2002,72(3):393-407. doi: 10.1306/081601720393

    CrossRef Google Scholar

    [38] ALLEGRE C J,MINSTER J F. Quantitative models of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters,1978,38(1):1-25. doi: 10.1016/0012-821X(78)90123-1

    CrossRef Google Scholar

    [39] HU J J,LI Q,FANG N Q,et al. Geochemistry characteristics of the Low Permian sedimentary rocks from central uplift zone,Qiangtang Basin,Tibet:insights into source-area weathering,provenance,recycling,and tectonic setting[J]. Arabian Journal of Geosciences,2015,8(8):5373-5388. doi: 10.1007/s12517-014-1583-8

    CrossRef Google Scholar

    [40] TAYLOR S R, MCLENNAN S M. The Continental Crust: its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks[M]. Oxford: Blackwell Scientific Publications, 1985.

    Google Scholar

    [41] 张学敏,岳琼申. 地球化学方法在化学风化作用和物源判别中的应用综述[J]. 华南地质与矿产,2018,34(1):41-58.

    Google Scholar

    [42] 徐长贵,加东辉,宛良伟. 渤海走滑断裂对古近系源-汇体系的控制作用[J]. 地球科学,2017,42(11):1871-1882.

    Google Scholar

    [43] 王孝辕,黄江波,杨海风,等. 莱北低凸起构造成因演化及其对沉积体系的控制作用[J]. 东北石油大学学报,2018,42(2):1-10.

    Google Scholar

    [44] 杨海风,钱赓,徐春强,等. 渤海湾盆地黄河口凹陷中央构造脊沙河街组砂体展布规律与储层发育特征[J]. 地球科学,2023,48(8):3068-3080.

    Google Scholar

    [45] MAYNARD J B,VALLONI R,YU H S. Composition of modern deep-sea sands from arc-related basins[J]. Geological Society,1982,10(1):551-561. doi: 10.1144/GSL.SP.1982.010.01.36

    CrossRef Google Scholar

    [46] 杜利林,郭敬辉,耿元生,等. 扬子西南缘盐边群时代及构造环境:来自碎屑沉积岩的约束[J]. 岩石学报,2013,29(2):641-672.

    Google Scholar

    [47] ROSER B P,KORSCH R J. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio[J]. The Journal of Geology,1986,94(5):635-650. doi: 10.1086/629071

    CrossRef Google Scholar

    [48] BHATIA M R,CROOK K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology,1986,92(2):181-193. doi: 10.1007/BF00375292

    CrossRef Google Scholar

    [49] BHATIA M R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks:provenance and tectonic control[J]. Sedimentary Geology,1985,45(1/2):97-113. doi: 10.1016/0037-0738(85)90025-9

    CrossRef Google Scholar

    [50] 刘士林,刘蕴华,林舸,等. 渤海湾盆地南堡凹陷新近系泥岩稀土元素地球化学特征及其地质意义[J]. 现代地质,2006,20(3):449-456.

    Google Scholar

    [51] 金宠. 黄骅坳陷和济阳坳陷中生界构造特征、演化及动力机制[D]. 青岛: 中国海洋大学, 2007.

    Google Scholar

    [52] 朱日祥. “华北克拉通破坏”重大研究计划结题综述[J]. 中国科学基金,2018,32(3):282-290.

    Google Scholar

    [53] 董树文,张岳桥,龙长兴,等. 中国侏罗纪构造变革与燕山运动新诠释[J]. 地质学报,2007,81(11):1449-1461.

    Google Scholar

    [54] 朱日祥,徐义刚. 西太平洋板块俯冲与华北克拉通破坏[J]. 中国科学(地球科学),2019,49(9):1346-1356.

    Google Scholar

    [55] 朱光,王薇,顾承串,等. 郯庐断裂带晚中生代演化历史及其对华北克拉通破坏过程的指示[J]. 岩石学报,2016,32(4):935-949.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(3)

Article Metrics

Article views(1125) PDF downloads(162) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint