2023 Vol. 39, No. 4
Article Contents

WU Xudong. Paleoenvironmental reconstruction of organic-rich shale in the Hetang Formation of the Lower Yangtze Block: a case study of Well XY1[J]. Marine Geology Frontiers, 2023, 39(4): 46-56. doi: 10.16028/j.1009-2722.2022.171
Citation: WU Xudong. Paleoenvironmental reconstruction of organic-rich shale in the Hetang Formation of the Lower Yangtze Block: a case study of Well XY1[J]. Marine Geology Frontiers, 2023, 39(4): 46-56. doi: 10.16028/j.1009-2722.2022.171

Paleoenvironmental reconstruction of organic-rich shale in the Hetang Formation of the Lower Yangtze Block: a case study of Well XY1

  • The sedimentary background and environment can be studied effectively through the element geochemical characteristics. Taking the organic-rich shale of the Lower Cambrian Hetang Formation in XY1 in Xuancheng Area as an example, the structural background and sedimentary environment of the organic-rich shale of the Hetang Formation in Xuancheng area of the Lower Yangtze block were analyzed by using the element geochemical indexes. The results show that: the organic-rich shales were deposited in a stable continental margin under warm and humid climate, and the marine environment was anoxic to oxygen poor. The water body was highly productive. The paleoenvironmental parameters indicate that organic-rich shale of Hetang Formation is of continental slope facies deposited in deep water, and the water depth deepened first and then shallowed.

  • 加载中
  • [1] WANG Q,CHEN X,JHA A N,et al. Natural gas from shale formation:the evolution,evidences and challenges of shale gas revolution in United States[J]. Renewable and Sustainable Energy Reviews,2014,30:1-28. doi: 10.1016/j.rser.2013.08.065

    CrossRef Google Scholar

    [2] 崇璇. 渝东南地区五峰—龙马溪组高频层序地层及对页岩储层的控制研究[D]. 北京: 中国矿业大学, 2020.

    Google Scholar

    [3] 詹容若. 张家滩页岩沉积作用和层序发展过程[D]. 西安: 西北大学, 2021.

    Google Scholar

    [4] 张记刚,杜猛,陈超,等. 吉木萨尔凹陷二叠系芦草沟组页岩储层孔隙结构定量表征[J]. 岩性油气藏,2022,34(4):89-102. doi: 10.12108/yxyqc.20220409

    CrossRef Google Scholar

    [5] 姜振学,梁志凯,申颍浩,等. 川南泸州地区页岩气甜点地质工程一体化关键要素耦合关系及攻关方向[J]. 地球科学,2023,48(1):110-129.

    Google Scholar

    [6] 徐银波, 毕彩芹, 李锋, 等. 三塘湖盆地石头梅地区巴油页1井二叠系芦草沟组有机相分析[J]. 煤炭学报, 2022, 47(11): 4094-4104.

    Google Scholar

    [7] BRUMSACK H J. The trace metal content of recent organic carbon-rich sediments:implications for Cretaceous black shale formation[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2006,232(2):344-361.

    Google Scholar

    [8] CAINENG Z,ZHI Y,JINGWEI C,et al. Formation mechanism,geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development,2013,40(1):15-27. doi: 10.1016/S1876-3804(13)60002-6

    CrossRef Google Scholar

    [9] 王昌勇, 常玖, 李楠, 等. 四川盆地东部地区早侏罗世湖泊古水深恢复[J/OL]. 沉积学报, 2022: 1-16. DOI: 10.14027/j.issn.1000-0550.2022.036

    Google Scholar

    [10] 张俊鹏,李超,张元动. 早古生代海洋缺氧事件的地质记录与背景机制[J]. 科学通报,2022,67(15):1644-1659.

    Google Scholar

    [11] 姚红生,何希鹏,汪凯明. 下扬子皖南地区下寒武统荷塘组页岩地球化学特征及地质意义[J]. 海洋地质前沿,2022,38(4):32-41. doi: 10.16028/j.1009-2722.2021.123

    CrossRef Google Scholar

    [12] 曾子轩,刘晓峰,楼章华,等. 古代深海硅质岩-粘土岩-碳酸盐岩系列(SAC)的岩石学分类[J]. 地球科学,2019,44(2):475-488.

    Google Scholar

    [13] 朱文博,张训华,曲中党,等. 赣东–浙西下寒武统荷塘组稀土元素特征及其地质意义[J]. 海洋地质与第四纪地质,2021,41(2):88-99. doi: 10.16562/j.cnki.0256-1492.2020031201

    CrossRef Google Scholar

    [14] 樊佳莉. 下扬子地区下寒武统富有机质页岩的岩相与沉积环境[J]. 地质科技情报,2017,36(5):156-163. doi: 10.19509/j.cnki.dzkq.2017.0521

    CrossRef Google Scholar

    [15] 胡杰,陈哲,薛耀松,等. 皖南早寒武世荷塘组海绵骨针化石[J]. 微体古生物学报,2002,19(1):55-64.

    Google Scholar

    [16] LIU B,SONG Y,ZHU K,et al. Mineralogy and element geochemistry of salinized lacustrine organic-rich shale in the Middle Permian Santanghu Basin:implications for paleoenvironment,provenance,tectonic setting and shale oil potential[J]. Marine and Petroleum Geology,2020,120:104569. doi: 10.1016/j.marpetgeo.2020.104569

    CrossRef Google Scholar

    [17] DO NASCIMENTO C A,DE SOUZA E S,MARTINS L L,et al. Changes in depositional paleoenvironment of black shales in the Permian Irati Formation (Paraná Basin,Brazil):geochemical evidence and aromatic biomarkers[J]. Marine and Petroleum Geology,2021,126:104917. doi: 10.1016/j.marpetgeo.2021.104917

    CrossRef Google Scholar

    [18] WANG S,SONG D,WANG Y,et al. Sedimentary geochemical proxies for paleoenvironment interpretation of organic-rich shale:a case study of the Lower Silurian Longmaxi Formation,southern Sichuan Basin,China[J]. Journal of Natural Gas Science and Engineering,2016,28:691-699. doi: 10.1016/j.jngse.2015.11.045

    CrossRef Google Scholar

    [19] 印峰,杨风丽,叶芳,等. 晚震旦至中奥陶世下扬子被动大陆边缘原型盆地特征[J]. 地球科学:中国地质大学学报,2013,38(5):1053-1064.

    Google Scholar

    [20] 郭念发. 下扬子盆地与区域地质构造演化特征及油气成藏分析[J]. 浙江地质,1996,12(2):19-27.

    Google Scholar

    [21] 吴浩,姚素平,焦堃,等. 下扬子区上二叠统龙潭组页岩气勘探前景[J]. 煤炭学报,2013,38(5):870-876. doi: 10.13225/j.cnki.jccs.2013.05.026

    CrossRef Google Scholar

    [22] 骆学全,孙建东,班宜忠,等. 华东片区Ⅳ级成矿单元划分及成矿地质特征[J]. 华东地质,2015,36(3):157-164. doi: 10.3969/j.issn.1671-4814.2015.03.001

    CrossRef Google Scholar

    [23] 肖万峰,洪大军,雷丁尔,等. 安徽宁国石口金矿地质特征及控矿因素[J]. 华东地质,2020,41(3):265-270.

    Google Scholar

    [24] 谢忱, 曾庆, 刘志坚, 等. 四川盆地基底断裂特征及对下二叠统沉积的控制作用初探[C]//2017全国沉积学与油气资源勘探开发利用技术研讨会论文集. 2017: 178-185.

    Google Scholar

    [25] BHATIA M R. Plate tectonics and geochemical composition of sandstones[J]. The Journal of Geology,1983,91(6):611-627. doi: 10.1086/628815

    CrossRef Google Scholar

    [26] IBAD S M,PADMANABHAN E. Inorganic geochemical,mineralogical and methane sorption capacities of Paleozoic shale formations from Western Peninsular Malaysia:implication of shale gas potential[J]. Applied Geochemistry,2022,140:105269. doi: 10.1016/j.apgeochem.2022.105269

    CrossRef Google Scholar

    [27] ZHOU Y,LIU Z,MAND K,et al. Analysis of geochemical characteristics of Jurassic sandstones in southern margin of Junggar Basin:provenance and paleosedimentary environment recovery[J]. Ore Geology Reviews,2022,146:104922. doi: 10.1016/j.oregeorev.2022.104922

    CrossRef Google Scholar

    [28] ROSER B P,KORSCH R J. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio[J]. The Journal of Geology,1986,94(5):635-650. doi: 10.1086/629071

    CrossRef Google Scholar

    [29] ADAMS J A S,WEAVER C E. Thorium-to-uranium ratios as indicators of sedimentary processes:example of concept of geochemical facies[J]. AAPG Bulletin,1958,42(2):387-430.

    Google Scholar

    [30] 王峰,刘玄春,邓秀芹,等. 鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义[J]. 沉积学报,2017,35(6):1265-1273. doi: 10.14027/j.cnki.cjxb.2017.06.017

    CrossRef Google Scholar

    [31] 张天福,孙立新,张云,等. 鄂尔多斯盆地北缘侏罗纪延安组、直罗组泥岩微量、稀土元素地球化学特征及其古沉积环境意义[J]. 地质学报,2016,90(12):3454-3472. doi: 10.3969/j.issn.0001-5717.2016.12.013

    CrossRef Google Scholar

    [32] LERMAN A. 湖泊的化学地质学和物理学[M]. 王苏民, 等, 译.北京: 地质出版社, 1989.

    Google Scholar

    [33] 李乐,姚光庆,刘永河,等. 塘沽地区沙河街组下部含云质泥岩主微量元素地球化学特征及地质意义[J]. 地球科学:中国地质大学学报,2015,40(9):1480-1496.

    Google Scholar

    [34] SUTTNER L J,DUTTA P K. Alluvial sandstone composition and paleoclimate; I,Framework mineralogy[J]. Journal of Sedimentary Research,1986,56(3):329-345.

    Google Scholar

    [35] 樊秋爽,夏国清,李高杰,等. 古海洋氧化还原条件分析方法与研究进展[J]. 沉积学报,2022,40(5):1151-1171. doi: 10.14027/j.issn.1000-0550.2021.023

    CrossRef Google Scholar

    [36] 付金华,李士祥,徐黎明,等. 鄂尔多斯盆地三叠系延长组长7段古沉积环境恢复及意义[J]. 石油勘探与开发,2018,45(6):936-946. doi: 10.11698/PED.2018.06.02

    CrossRef Google Scholar

    [37] JONES B,MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology,1994,111(1):111-129.

    Google Scholar

    [38] ALGEO T J,MAYNARD J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical geology,2004,206(3/4):289-318.

    Google Scholar

    [39] ALGEO T J,TRIBOVILARD N. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation[J]. Chemical Geology,2009,268(3/4):211-225.

    Google Scholar

    [40] 张晓潼,袁华茂,宋金明,等. 海洋Re、Mo和U对氧化还原环境的指示作用[J]. 地球科学进展,2022,37(4):358-369. doi: 10.11867/j.issn.1001-8166.2022.4.dqkxjz202204003

    CrossRef Google Scholar

    [41] TRIBOVILARD N,ALGEOT J,BAUDIN F,et al. Analysis of marine environmental conditions based on molybdenum–uranium covariation:applications to Mesozoic paleoceanography[J]. Chemical Geology,2012,324:46-58.

    Google Scholar

    [42] SCHOEPFER S D,SHEN J,WEI H,et al. Total organic carbon,organic phosphorus,and biogenic barium fluxes as proxies for paleomarine productivity[J]. Earth-Science Reviews,2015,149:23-52. doi: 10.1016/j.earscirev.2014.08.017

    CrossRef Google Scholar

    [43] BISHOP J K B. The barite-opal-organic carbon association in oceanic particulate matter[J]. Nature,1988,332(6162):341-343. doi: 10.1038/332341a0

    CrossRef Google Scholar

    [44] DEHAIRS F,CHESSELET R,JEDWAB J. Discrete suspended particles of barite and the barium cycle in the open ocean[J]. Earth and Planetary Science Letters,1980,49(2):528-550. doi: 10.1016/0012-821X(80)90094-1

    CrossRef Google Scholar

    [45] DYMOND J,COLLIER R. Particulate barium fluxes and their relationships to biological productivity[J]. Deep Sea Research Part II:Topical Studies in Oceanography,1996,43(4/6):1283-1308.

    Google Scholar

    [46] GINGELE F X, ZABEL M, KASTEN S, et al. Biogenic barium as a proxy for paleoproductivity: methods and limitations of application[M]//Use of Proxies in Paleoceanography. Berlin, Heidelberg: Springer, 1999: 345-364.

    Google Scholar

    [47] STEDMAN N J,MORRIS G M,ATKINSON P J. Bibliography of theoretical calculations in molecular pharmacology[J]. Journal of Molecular Graphics,1987,5(4):211-222. doi: 10.1016/0263-7855(87)80031-0

    CrossRef Google Scholar

    [48] 万锦峰,鲜本忠,佘源琦,等. 基于伽马能谱测井信息的古水深恢复方法:以塔河油田4区巴楚组为例[J]. 石油天然气学报,2011,33(6):98-103. doi: 10.3969/j.issn.1000-9752.2011.06.021

    CrossRef Google Scholar

    [49] 陆雨诗,胡勇,侯云东,等. 鄂尔多斯盆地西缘羊虎沟组微量元素地球化学特征及沉积环境指示意义[J]. 科学技术与工程,2021,21(28):11999-12009. doi: 10.3969/j.issn.1671-1815.2021.28.013

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(1)

Article Metrics

Article views(1493) PDF downloads(122) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint