2023 Vol. 39, No. 10
Article Contents

ZHOU Yucheng, CAO Hong, GENG Wei, LIU Chenhui, ZHANG Xilin, ZHAI Bin, ZHANG Xianrong, CHEN Ye, LYU Taiheng, CAO Youwen, ZHANG Dong, YAN Dawei, SUN Zhilei. Research progress on reconstruction method of redox conditions in submarine seafloor cold seeps[J]. Marine Geology Frontiers, 2023, 39(10): 1-13. doi: 10.16028/j.1009-2722.2022.169
Citation: ZHOU Yucheng, CAO Hong, GENG Wei, LIU Chenhui, ZHANG Xilin, ZHAI Bin, ZHANG Xianrong, CHEN Ye, LYU Taiheng, CAO Youwen, ZHANG Dong, YAN Dawei, SUN Zhilei. Research progress on reconstruction method of redox conditions in submarine seafloor cold seeps[J]. Marine Geology Frontiers, 2023, 39(10): 1-13. doi: 10.16028/j.1009-2722.2022.169

Research progress on reconstruction method of redox conditions in submarine seafloor cold seeps

More Information
  • Cold seep is one of the seafloor extreme environmental systems, it has important scientific significance in gas hydrate exploration and global climate change for extreme environmental life activities. Reconstruction of redox conditions in cold seep is an important way to study the biogeochemical processes and reveal the characteristics of methane seepage. In recent years, many mineralogical and geochemical indicators have been successfully used in the study of the recovery of redox conditions in cold seep systems. Based on previous studies, the responding mechanisms of different redox indicators were summarized, such as autogenetic mineralogical characteristics, rare earth elements, redox sensitive elements (Mo, U, and Fe), and stable isotopes (δ98Mo, δ56Fe, and δ34S). The influencing factors and existing issues of each index were discussed from the aspects of test and analysis methods, diagenetic alteration, and non-uniqueness in using a single index. At last, the key research direction in this field in the future was proposed.

  • 加载中
  • [1] BOETIUS A,WENZHÖFER F. Seafloor oxygen consumption fuelled by methane from cold seeps[J]. Nature Geoscience,2013,6(9):725-734. doi: 10.1038/ngeo1926

    CrossRef Google Scholar

    [2] SUESS E. Marine cold seeps and their manifestations:geological control,biogeochemical criteria and environmental conditions[J]. International Journal of Earth Sciences,2014,103(7):1889-1916. doi: 10.1007/s00531-014-1010-0

    CrossRef Google Scholar

    [3] 孙治雷,魏合龙,王利波,等. 海底冷泉系统的碳循环问题及探测[J]. 应用海洋学学报,2016,35(3):442-450. doi: 10.3969/J.ISSN.2095-4972.2016.03.017

    CrossRef Google Scholar

    [4] WOODSIDE J M,GARRISON R E,MOORE J C,et al. Preface to thematic issue on hydrocarbon seeps in marginal seas[J]. Geo-Marine Letters,2004,24(3):133-134.

    Google Scholar

    [5] Judd A G,Hovland M,Dimitrov L I,et al. The geological methane budget at continental margins and its influence on climate change[J]. Geofluids,2002,2(2):109-126. doi: 10.1046/j.1468-8123.2002.00027.x

    CrossRef Google Scholar

    [6] 吴自军,任德章,周怀阳. 海洋沉积物甲烷厌氧氧化作用(AOM)及其对无机硫循环的影响[J]. 地球科学进展,2013,28(07):765-773. doi: 10.11867/j.issn.1001-8166.2013.07.0765

    CrossRef Google Scholar

    [7] FENG D,QIU J W,HU Y,et al. Cold seep systems in the South China Sea:an overview[J]. Journal of Asian Earth Sciences,2018,168:3-16. doi: 10.1016/j.jseaes.2018.09.021

    CrossRef Google Scholar

    [8] VALENTINE D L,KASTNER M,WARDLAW G D,et al. Biogeochemical investigations of marine methane seeps,Hydrate Ridge,Oregon[J]. Journal of Geophysical Research:Biogeosciences,2005,110(G2):G02005.

    Google Scholar

    [9] CAO H,SUN Z L,WU N Y,et al. Mineralogical and geochemical records of seafloor cold seepage history in the northern Okinawa Trough,East China Sea[J]. Deep Sea Research Part I:Oceanographic Research Papers,2020,155:103165. doi: 10.1016/j.dsr.2019.103165

    CrossRef Google Scholar

    [10] XU C L,WU N Y,SUN Z L,et al. Assessing methane cycling in the seep sediments of the mid-Okinawa Trough:insights from pore-water geochemistry and numerical modeling[J]. Ore Geology Reviews,2021,129:103909. doi: 10.1016/j.oregeorev.2020.103909

    CrossRef Google Scholar

    [11] SATO H,HAYASHI K I,OGAWA Y,et al. Geochemistry of deep sea sediments at cold seep sites in the Nankai Trough:insights into the effect of anaerobic oxidation of methane[J]. Marine Geology,2012,323/325:47-55. doi: 10.1016/j.margeo.2012.07.013

    CrossRef Google Scholar

    [12] SOLOMON E A,KASTNER M,JANNASCH H,et al. Dynamic fluid flow and chemical fluxes associated with a seafloor gas hydrate deposit on the northern Gulf of Mexico slope[J]. Earth and Planetary Science Letters,2008,270(1/2):95-105.

    Google Scholar

    [13] YANG K H,ZHU Z M,DONG Y H,et al. Evolution and diagenetic implications of framboids in the methane-related carbonates of the northern Okinawa Trough[J]. Acta Oceanologica Sinica,2021,40(12):114-124. doi: 10.1007/s13131-021-1869-0

    CrossRef Google Scholar

    [14] TONG H P,FENG D,PECKMANN J,et al. Environments favoring dolomite formation at cold seeps:a case study from the Gulf of Mexico[J]. Chemical Geology,2019,518:9-18. doi: 10.1016/j.marpetgeo.2021.105020

    CrossRef Google Scholar

    [15] DENG Y N,CHEN F,HU Y,et al. Methane seepage patterns during the Middle Pleistocene inferred from molybdenum enrichments of seep carbonates in the South China Sea[J]. Ore Geology Reviews,2020,125:103701. doi: 10.1016/j.oregeorev.2020.103701

    CrossRef Google Scholar

    [16] HU Y,FENG D,CHEN L Y,et al. Using iron speciation in authigenic carbonates from hydrocarbon seeps to trace variable redox conditions[J]. Marine and Petroleum Geology,2015,67:111-119. doi: 10.1016/j.marpetgeo.2015.05.001

    CrossRef Google Scholar

    [17] 林杞. 南海北部天然气水合物赋存区沉积物中自生矿物特征及其硫酸盐—甲烷转换带指示意义[D]. 武汉: 中国地质大学(武汉), 2016.

    Google Scholar

    [18] HAAS A,PECKMANN J,ELVERT M,et al. Patterns of carbonate authigenesis at the Kouilou pockmarks on the Congo deep-sea fan[J]. Marine Geology,2010,268(1/4):129-136.

    Google Scholar

    [19] FENG D,ROBERTS H H,JOYE S B,et al. Formation of low-magnesium calcite at cold seeps in an aragonite sea[J]. Terra Nova,2014,26(2):150-156. doi: 10.1111/ter.12081

    CrossRef Google Scholar

    [20] NAEHR T H,EICHHUBL P,ORPHAN V J,et al. Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments:a comparative study[J]. Deep Sea Research Part II:Topical Studies in Oceanography,2007,54(11/13):1268-1291.

    Google Scholar

    [21] WARREN J. Dolomite:occurrence,evolution and economically important associations[J]. Earth-Science Reviews,2000,52(1/3):1-81.

    Google Scholar

    [22] SUN Z L,WU N Y,CAO H,et al. Hydrothermal metal supplies enhance the benthic methane filter in oceans:an example from the Okinawa Trough[J]. Chemical Geology,2019,525:190-209. doi: 10.1016/j.chemgeo.2019.07.025

    CrossRef Google Scholar

    [23] 张现荣,孙治雷,魏合龙,等. 自生黄铁矿的微生物成矿机理及对冷泉泄漏的指示意义[J]. 海洋地质与第四纪地质,2017,37(2):25-32.

    Google Scholar

    [24] 常华进,储雪蕾. 草莓状黄铁矿与古海洋环境恢复[J]. 地球科学进展,2011,26(5):475-481.

    Google Scholar

    [25] WILKIN R T,BARNES H L,BRANTLEY S L. The size distribution of framboidal pyrite in modern sediments:an indicator of redox conditions[J]. Geochimica et Cosmochimica Acta,1996,60(20):3897-3912. doi: 10.1016/0016-7037(96)00209-8

    CrossRef Google Scholar

    [26] RICKARD D. Sedimentary pyrite framboid size-frequency distributions:a meta-analysis[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2019,522:62-75.

    Google Scholar

    [27] PALOMARES R M,HERNÁNDEZ R L,FRÍAS J M. Mechanisms of trace metal enrichment in submarine,methane-derived carbonate chimneys from the Gulf of Cadiz[J]. Journal of Geochemical Exploration,2012,112:297-305. doi: 10.1016/j.gexplo.2011.09.011

    CrossRef Google Scholar

    [28] TAYLOR S R, MCLENNAN S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific Publication, 1985.

    Google Scholar

    [29] ELDERFIELD H,UPSTILL-GODDARD R,SHOLKOVITZ E R. The rare earth elements in rivers,estuaries,and coastal seas and their significance to the composition of ocean waters[J]. Geochimica et Cosmochimica Acta,1990,54(4):971-991. doi: 10.1016/0016-7037(90)90432-K

    CrossRef Google Scholar

    [30] FENG D,CHEN D F,PECKMANN J. Rare earth elements in seep carbonates as tracers of variable redox conditions at ancient hydrocarbon seeps[J]. Terra Nova,2009,21(1):49-56. doi: 10.1111/j.1365-3121.2008.00855.x

    CrossRef Google Scholar

    [31] MOFFETT J W. Microbially mediated cerium oxidation in sea water[J]. Nature,1990,345(6274):421-423. doi: 10.1038/345421a0

    CrossRef Google Scholar

    [32] GERMAN C R,ELDERFIELD H. Application of the Ce anomaly as a paleoredox indicator:the ground rules[J]. Paleoceanography,1990,5(5):823-833. doi: 10.1029/PA005i005p00823

    CrossRef Google Scholar

    [33] CHEN D F,HUANG Y Y,YUAN X L,et al. Seep carbonates and preserved methane oxidizing archaea and sulfate reducing bacteria fossils suggest recent gas venting on the seafloor in the Northeastern South China Sea[J]. Marine and Petroleum Geology,2005,22(5):613-621. doi: 10.1016/j.marpetgeo.2005.05.002

    CrossRef Google Scholar

    [34] FENG D,CHEN D F,PECKMANN J,et al. Authigenic carbonates from methane seeps of the northern Congo fan:microbial Formation mechanism[J]. Marine and Petroleum Geology,2010,27(4):748-756. doi: 10.1016/j.marpetgeo.2009.08.006

    CrossRef Google Scholar

    [35] WANG S H,MAGALHÃES V H,PINHEIRO L M,et al. Tracing the composition,fluid source and Formation conditions of the methane-derived authigenic carbonates in the Gulf of Cadiz with rare earth elements and stable isotopes[J]. Marine and Petroleum Geology,2015,68:192-205. doi: 10.1016/j.marpetgeo.2015.08.022

    CrossRef Google Scholar

    [36] BIRGEL D,FENG D,ROBERTS H H,et al. Changing redox conditions at cold seeps as revealed by authigenic carbonates from Alaminos Canyon,northern Gulf of Mexico[J]. Chemical Geology,2011,285(1/4):82-96.

    Google Scholar

    [37] ARGENTINO C,LUGLI F,CIPRIANI A,et al. A deep fluid source of radiogenic Sr and highly dynamic seepage conditions recorded in Miocene seep carbonates of the northern Apennines (Italy)[J]. Chemical Geology,2019,522:135-147. doi: 10.1016/j.chemgeo.2019.05.029

    CrossRef Google Scholar

    [38] EMERSON S R,HUESTED S S. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater[J]. Marine Chemistry,1991,34(3/4):177-196.

    Google Scholar

    [39] BARLING J,ANBAR A D. Molybdenum isotope fractionation during adsorption by manganese oxides[J]. Earth and Planetary Science Letters,2004,217(3/4):315-329.

    Google Scholar

    [40] SCOTT C,LYONS T W. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks:refining the paleoproxies[J]. Chemical Geology,2012,324/325:19-27. doi: 10.1016/j.chemgeo.2012.05.012

    CrossRef Google Scholar

    [41] ALGEO T J,TRIBOVILLARD N. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation[J]. Chemical Geology,2009,268(3/4):211-225.

    Google Scholar

    [42] ANDERSON R F,LEHURAY A P,FLEISHER M Q,et al. Uranium deposition in saanich inlet sediments,Vancouver island[J]. Geochimica et Cosmochimica Acta,1989,53(9):2205-2213. doi: 10.1016/0016-7037(89)90344-X

    CrossRef Google Scholar

    [43] TRIBOVILLARD N,ALGEO T J,BAUDIN F,et al. Analysis of marine environmental conditions based on molybdenum-uranium covariation-Applications to Mesozoic paleoceanography[J]. Chemical Geology,2012,299(324/325):46-58.

    Google Scholar

    [44] 汤冬杰,史晓颖,赵相宽,等. Mo-U共变作为古沉积环境氧化还原条件分析的重要指标——进展、问题与展望[J]. 现代地质,2015,29(1):1-13. doi: 10.3969/j.issn.1000-8527.2015.01.001

    CrossRef Google Scholar

    [45] LYONS T W,SEVERMANN S. A critical look at iron paleoredox proxies:new insights from modern euxinic marine basins[J]. Geochimica et Cosmochimica Acta,2006,70(23):5698-5722. doi: 10.1016/j.gca.2006.08.021

    CrossRef Google Scholar

    [46] SCHOLZ F,SEVERMANN S,MCMANUS J,et al. Beyond the black sea paradigm:the sedimentary fingerprint of an open-marine iron shuttle[J]. Geochimica et Cosmochimica Acta,2014,127:368-380. doi: 10.1016/j.gca.2013.11.041

    CrossRef Google Scholar

    [47] COEY J M D. Iron in a post-glacial lake sediment core; a Mössbauer effect study[J]. Geochimica et Cosmochimica Acta,1975,39(4):401-415. doi: 10.1016/0016-7037(75)90097-6

    CrossRef Google Scholar

    [48] 郑国东. 基于穆斯堡尔谱技术的铁化学种及其在相关表生地球科学研究中的应用[J]. 矿物岩石地球化学通报,2008,27(2):161-168. doi: 10.3969/j.issn.1007-2802.2008.02.009

    CrossRef Google Scholar

    [49] JING X,ZHANG F F,WU Y. Iron speciation in sediment cores near the Jiulong methane reef and its implication[J]. Estuarine,Coastal and Shelf Science,2019,224:253-259. doi: 10.1016/j.ecss.2019.04.015

    CrossRef Google Scholar

    [50] SUN Z L,WEI H L,ZHANG X H,et al. A unique Fe-rich carbonate chimney associated with cold seeps in the northern Okinawa Trough,East China Sea[J]. Deep Sea Research Part I:Oceanographic Research Papers,2015,95:37-53. doi: 10.1016/j.dsr.2014.10.005

    CrossRef Google Scholar

    [51] SCHOLZ F,SIEBERT C,DALE A W,et al. Intense molybdenum accumulation in sediments underneath a nitrogenous water column and implications for the reconstruction of paleo-redox conditions based on molybdenum isotopes[J]. Geochimica et Cosmochimica Acta,2017,213:400-417. doi: 10.1016/j.gca.2017.06.048

    CrossRef Google Scholar

    [52] ARNOLD G L,LYONS T W,GORDON G W,et al. Extreme change in sulfide concentrations in the Black Sea during the Little Ice Age reconstructed using molybdenum isotopes[J]. Geology,2012,40(7):595-598. doi: 10.1130/G32932.1

    CrossRef Google Scholar

    [53] ROMANIELLO S J,HERRMANN A D,ANBAR A D. Syndepositional diagenetic control of molybdenum isotope variations in carbonate sediments from the Bahamas[J]. Chemical Geology,2016,438:84-90. doi: 10.1016/j.chemgeo.2016.05.019

    CrossRef Google Scholar

    [54] SIEBERT C,MCMANUS J,BICE A,et al. Molybdenum isotope signatures in continental margin marine sediments[J]. Earth and Planetary Science Letters,2006,241(3/4):723-733.

    Google Scholar

    [55] POULSON R L,SIEBERT C,MCMANUS J,et al. Authigenic molybdenum isotope signatures in marine sediments[J]. Geology,2006,34(8):617-620. doi: 10.1130/G22485.1

    CrossRef Google Scholar

    [56] LIN Z Y,SUN X M,STRAUSS H,et al. Molybdenum isotope composition of seep carbonates:constraints on sediment biogeochemistry in seepage environments[J]. Geochimica et Cosmochimica Acta,2021,307:56-71. doi: 10.1016/j.gca.2021.05.038

    CrossRef Google Scholar

    [57] KNITTEL K,BOETIUS A. Anaerobic oxidation of methane:progress with an unknown process[J]. Annual Review of Microbiology,2009,63(1):311-334. doi: 10.1146/annurev.micro.61.080706.093130

    CrossRef Google Scholar

    [58] DEUSNER C,HOLLER T,ARNOLD G L,et al. Sulfur and oxygen isotope fractionation during sulfate reduction coupled to anaerobic oxidation of methane is dependent on methane concentration[J]. Earth and Planetary Science Letters,2014,399:61-73. doi: 10.1016/j.jpgl.2014.04.047

    CrossRef Google Scholar

    [59] BOROWSKI W S,RODRIGUEZ N M,PAULL C K,et al. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record?[J]. Marine and Petroleum Geology,2013,43:381-395. doi: 10.1016/j.marpetgeo.2012.12.009

    CrossRef Google Scholar

    [60] LIN Q,WANG J S,TALADAY K,et al. Coupled pyrite concentration and sulfur isotopic insight into the paleo sulfate-methane transition zone (SMTZ) in the northern South China Sea[J]. Journal of Asian Earth Sciences,2016,115:547-556. doi: 10.1016/j.jseaes.2015.11.001

    CrossRef Google Scholar

    [61] GONG S G,FENG D,PENG Y B,et al. Deciphering the sulfur and oxygen isotope patterns of sulfate-driven anaerobic oxidation of methane[J]. Chemical Geology,2021,581:120394. doi: 10.1016/j.chemgeo.2021.120394

    CrossRef Google Scholar

    [62] TURCHYN A V,ANTLER G,BYRNE D,et al. Microbial sulfur metabolism evidenced from pore fluid isotope geochemistry at Site U1385[J]. Global and Planetary Change,2016,141:82-90. doi: 10.1016/j.gloplacha.2016.03.004

    CrossRef Google Scholar

    [63] FENG D,ROBERTS H H. Geochemical characteristics of the barite deposits at cold seeps from the northern Gulf of Mexico continental slope[J]. Earth and Planetary Science Letters,2011,309(1/2):89-99.

    Google Scholar

    [64] FENG D,PENG Y B,BAO H M,et al. A carbonate-based proxy for sulfate-driven anaerobic oxidation of methane[J]. Geology,2016,44(12):999-1002. doi: 10.1130/G38233.1

    CrossRef Google Scholar

    [65] GONG S G,PENG Y B,BAO H M,et al. Triple sulfur isotope relationships during sulfate-driven anaerobic oxidation of methane[J]. Earth and Planetary Science Letters,2018,504:13-20. doi: 10.1016/j.jpgl.2018.09.036

    CrossRef Google Scholar

    [66] LIU J R,PELLERIN A,WANG J S,et al. Multiple sulfur isotopes discriminate organoclastic and methane-based sulfate reduction by sub-seafloor pyrite Formation[J]. Geochimica et Cosmochimica Acta,2022,316:309-330. doi: 10.1016/j.gca.2021.09.026

    CrossRef Google Scholar

    [67] ANTLER G,TURCHYN A V,RENNIE V,et al. Coupled sulfur and oxygen isotope insight into bacterial sulfate reduction in the natural environment[J]. Geochimica et Cosmochimica Acta,2013,118:98-117. doi: 10.1016/j.gca.2013.05.005

    CrossRef Google Scholar

    [68] ANTLER G,TURCHYN A V,HERUT B,et al. A unique isotopic fingerprint of sulfate-driven anaerobic oxidation of methane[J]. Geology,2015,43(7):619-622. doi: 10.1130/G36688.1

    CrossRef Google Scholar

    [69] LIN Z Y,SUN X M,STRAUSS H,et al. Multiple sulfur isotope constraints on sulfate-driven anaerobic oxidation of methane:evidence from authigenic pyrite in seepage areas of the South China Sea[J]. Geochimica et Cosmochimica Acta,2017,211:153-173. doi: 10.1016/j.gca.2017.05.015

    CrossRef Google Scholar

    [70] 冯东,宫尚桂. 海底冷泉系统硫的生物地球化学过程及其沉积记录研究进展[J]. 矿物岩石地球化学通报,2019,38(6):1047-1056. doi: 10.19658/j.issn.1007-2802.2019.38.105

    CrossRef Google Scholar

    [71] 闫斌,朱祥坤,唐索寒,等. 广西新元古代BIF的铁同位素特征及其地质意义[J]. 地质学报,2010,84(7):1080-1086. doi: 10.19762/j.cnki.dizhixuebao.2010.07.011

    CrossRef Google Scholar

    [72] JOHNSON C M,BEARD B L,KLEIN C,et al. Iron isotopes constrain biologic and abiologic processes in banded iron Formation genesis[J]. Geochimica et Cosmochimica Acta,2008,72(1):151-169. doi: 10.1016/j.gca.2007.10.013

    CrossRef Google Scholar

    [73] BALCI N,BULLEN T D,WITTE-LIEN K,et al. Iron isotope fractionation during microbially stimulated Fe(II) oxidation and Fe(III) precipitation[J]. Geochimica et Cosmochimica Acta,2006,70(3):622-639. doi: 10.1016/j.gca.2005.09.025

    CrossRef Google Scholar

    [74] 李津. 低温条件下过渡族元素同位素分馏及其在古海洋研究中的应用[D]. 北京: 中国地质科学院, 2008.

    Google Scholar

    [75] 张美,吴能友,陆红锋. 南海神狐海域富Fe碳酸盐岩烟囱矿物学和地球化学的研究[J]. 矿物学报,2015,35(S1):806. doi: 10.16461/j.cnki.1000-4734.2015.s1.589

    CrossRef Google Scholar

    [76] SUN Z L,ZHOU H Y,GLASBY G P,et al. Formations of Fe-Mn-Si oxide and nontronite deposits in hydrothermal fields on the Valu Fa Ridge,Lau Basin[J]. Journal of Asian Earth Sciences,2012,43(1):64-76. doi: 10.1016/j.jseaes.2011.08.011

    CrossRef Google Scholar

    [77] SUN Z L,ZHOU H Y,GLASBY G P,et al. Mineralogical characterization and formation of Fe-Si oxyhydroxide deposits from modern seafloor hydrothermal vents[J]. American Mineralogist,2013,98(1):85-97. doi: 10.2138/am.2013.4147

    CrossRef Google Scholar

    [78] SUN Z L,LI J,HUANG W,et al. Generation of hydrothermal Fe-Si oxyhydroxide deposit on the Southwest Indian Ridge and its implication for the origin of ancient banded iron formations[J]. Journal of Geophysical Research,2015,120(1):187-203.

    Google Scholar

    [79] ZWICKER J,SMRZKA D,HIMMLER T,et al. Rare earth elements as tracers for microbial activity and early diagenesis:A new perspective from carbonate cements of ancient methane-seep deposits[J]. Chemical Geology,2018,501:77-85. doi: 10.1016/j.chemgeo.2018.10.010

    CrossRef Google Scholar

    [80] 蒋少涌,陈唯,赵葵东,等. 基于LA-(MC)-ICP-MS的矿物原位微区同位素分析技术及其应用[J]. 质谱学报,2021,42(5):623-640.

    Google Scholar

    [81] LIN Z Y,SUN X M,PECKMANN J,et al. How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite:a SIMS study from the South China Sea[J]. Chemical Geology,2016,440:26-41. doi: 10.1016/j.chemgeo.2016.07.007

    CrossRef Google Scholar

    [82] SIEBERT C,NÄGLER T F,VON BLANCKENBURG F,et al. Molybdenum isotope records as a potential new proxy for paleoceanography[J]. Earth and Planetary Science Letters,2003,211(1/2):159-171.

    Google Scholar

    [83] DEHLER C M,ELRICK M,BLOCH J D,et al. High-resolution δ13C stratigraphy of the Chuar Group (ca. 770-742 Ma),Grand Canyon:implications for mid-Neoproterozoic climate change[J]. GSA Bulletin,2005,117(1/2):32-45.

    Google Scholar

    [84] 赵彦彦,郑永飞. 碳酸盐沉积物的成岩作用[J]. 岩石学报,2011,27(2):501-519.

    Google Scholar

    [85] MCARTHUR J M,WALSH J N. Rare-earth geochemistry of phosphorites[J]. Chemical Geology,1984,47(3/4):91-220.

    Google Scholar

    [86] JOHANNESSON K H,HAWKINS D L,CORTÉS A. Do Archean chemical sediments record ancient seawater rare earth element patterns?[J]. Geochimica et Cosmochimica Acta,2006,70(4):871-890. doi: 10.1016/j.gca.2005.10.013

    CrossRef Google Scholar

    [87] SHIELDS G,STILLE P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies:An isotopic and REE study of Cambrian phosphorites[J]. Chemical Geology,2001,175(1/2):29-48.

    Google Scholar

    [88] POURRET O,DAVRANCHE M,GRUAU G,et al. New insights into cerium anomalies in organic-rich alkaline waters[J]. Chemical Geology,2008,251(1):120-127.

    Google Scholar

    [89] HIMMLER T,BACH W,BOHRMANN G,et al. Rare earth elements in authigenic methane-seep carbonates as tracers for fluid composition during early diagenesis[J]. Chemical Geology,2010,277(1/2):126-136.

    Google Scholar

    [90] SMRZKA D,FENG D,HIMMLER T,et al. Trace elements in methane-seep carbonates:Potentials,limitations,and perspectives[J]. Earth-Science Reviews,2020,208:103263. doi: 10.1016/j.earscirev.2020.103263

    CrossRef Google Scholar

    [91] HU Y,CHEN L Y,FENG D,et al. Geochemical record of methane seepage in authigenic carbonates and surrounding host sediments:a case study from the South China Sea[J]. Journal of Asian Earth Sciences,2017,138:51-61. doi: 10.1016/j.jseaes.2017.02.004

    CrossRef Google Scholar

    [92] PIERRE C. Origin of the authigenic gypsum and pyrite from active methane seeps of the southwest African Margin[J]. Chemical Geology,2017,449:158-164. doi: 10.1016/j.chemgeo.2016.11.005

    CrossRef Google Scholar

    [93] 程猛,李超,周炼,等. 钼海洋地球化学与古海洋化学重建[J]. 中国科学:地球科学,2015,45(11):1649-1660.

    Google Scholar

    [94] REITZ A,WILLE M,NÄGLER T F,et al. Atypical Mo isotope signatures in eastern Mediterranean sediments[J]. Chemical Geology,2007,245(1/2):1-8.

    Google Scholar

    [95] DONG A G,SUN Z L,KENDALL B,et al. Insights from modern diffuse-flow hydrothermal systems into the origin of post-GOE deep-water Fe-Si precipitates[J]. Geochimica et Cosmo-chimica Acta,2022,317:1-17. doi: 10.1016/j.gca.2021.10.001

    CrossRef Google Scholar

    [96] 朱祥坤,王跃,闫斌,等. 非传统稳定同位素地球化学的创建与发展[J]. 矿物岩石地球化学通报,2013,32(6):651-688.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(1359) PDF downloads(443) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint