Citation: | KE Xing, CHEN Jianwen, GONG Jianming, YANG Chuansheng, YANG Changqing, XIE Mingying, WANG Jianqiang, YUAN Yong. Suitability evaluation of CO2 sequestration in the East China Sea Shelf Basin[J]. Marine Geology Frontiers, 2023, 39(7): 1-12. doi: 10.16028/j.1009-2722.2022.156 |
Excessive greenhouse gas emissions have caused obvious global climate change and many secondary disasters. CO2 capture and sequestration technology came into being. There are many CO2 emission sources along the coast of the East China Sea, but the land basin area is small, which cannot meet the needs of huge amount of CO2 storage. The continental shelf basin of the East China Sea ranks the third in the suitability of carbon sequestration in China's offshore basins, with a wide area and good sealing. On this basis, the suitability of basin level carbon sequestration in the East China Sea Shelf Basin was evaluated. Combined with expert opinions and available research results in analytic hierarchy. According to the relevant geological data of each secondary structural unit in the basin, the suitability evaluation index system and index weight were established by using fuzzy comprehensive evaluation, in which each evaluation index of each unit is scored according to the evaluation index grading, and the comprehensive suitability score is calculated by combining the weight. After comprehensively considering the carbon storage capacity, sealing, and operability, the evaluation results show that the carbon storage suitability is better in the eastern depression than that in the western depression, and the central uplift is the poorest. Among them, the Taipei Depression is the best unit in comprehensive suitability of carbon storage in the basin, which can be used as a priority experimental storage area.
[1] | 焦丽杰. 我国的碳排放现状和实现“双碳”目标的挑战[J]. 中国总会计师,2021(6):38-39. |
[2] | 中华人民共和国国务院新闻办公室. 中国应对气候变化的政策与行动(2011)[EB/OL]. (2011-11-22)[2022-04-28]. http://www.gov.cn/jrzg/2011-11/22/content_2000047.htm. |
[3] | 卞相珊. 从国际气候谈判看中国低碳经济转型[J]. 政法论丛,2011(3):19-25. doi: 10.3969/j.issn.1002-6274.2011.03.003 |
[4] | 李波. 应对气候变化的有效途径:二氧化碳捕集与封存[J]. 中国人口·资源与环境,2011,21(S1):517-520. |
[5] | Carbon capture journal Group. The global status of CCS 2014[J]. Carbon Capture Journal,2015(43):6-8. |
[6] | HOLLOWAY S. An overview of the underground disposal of carbon dioxide[J]. Energy Conversion and Management,1997,38(S1):193-198. |
[7] | ORR F M. Storage of carbon dioxide in geologic formations[J]. Journal of Petroleum Technology,2004,56(9):90-97. doi: 10.2118/88842-JPT |
[8] | PECKHAM J. Global CCS institute:EU falling behind on carbon capture and storage[J]. Gasification News,2014,17(4):13-14. |
[9] | 杨红,赵习森,康宇龙,等. 鄂尔多斯盆地CO2地质封存适宜性与潜力评价[J]. 气候变化研究进展,2019,15(1):95-102. |
[10] | 张冰,梁凯强,王维波,等. 鄂尔多斯盆地深部咸水层CO2有效地质封存潜力评价[J]. 非常规油气,2019,6(3):15-20. doi: 10.3969/j.issn.2095-8471.2019.03.003 |
[11] | 何佳林,师庆三,董海海,等. 新疆准东油田各区块CO2地质封存潜力评估[J]. 新疆大学学报(自然科学版),2018,35(4):528-531. |
[12] | 李玮,师庆三,董海海,等. 低渗透油藏二氧化碳混相驱注采方式研究:以克拉玛依油田X区克下组低渗透油藏为例[J]. 中国地质,2022,49(2):485-495. |
[13] | 汪传胜,田蓉,季峻峰,等. 苏北盆地油田封存二氧化碳潜力初探[J]. 高校地质学报,2012,18(2):225-231. doi: 10.3969/j.issn.1006-7493.2012.02.004 |
[14] | 孙亮,陈文颖. 中国陆上油藏CO2封存潜力评估[J]. 中国人口·资源与环境,2012,22(6):76-81. doi: 10.3969/j.issn.1002-2104.2012.06.013 |
[15] | 张贤,李阳,马乔,等. 中国碳捕集利用与封存技术发展研究[J]. 中国工程科学,2021,23(6):70-80. |
[16] | 郭建强,张森琦. 深部咸水层CO2地质储存工程场地选址技术方法[J]. 吉林大学学报(地球科学版),2011,41(4):1084-1091. |
[17] | 贾小丰,张杨,张徽,等. 中国二氧化碳地质储存目标靶区筛选技术方法[J]. 吉林大学学报(地球科学版),2014,44(4):1314-1326. |
[18] | 刘桂臻,李琦. 气候变化背景下二氧化碳地质封存的盆地级选址评价方法[J]. 气候变化研究快报,2014,3(1):13-19. |
[19] | MICHAEL K,ARNOT M,COOK P,et al. CO2 storage in saline aquifers I-Current state of scientific knowledge[J]. Energy Procedia,2009,1:3197-3204. doi: 10.1016/j.egypro.2009.02.103 |
[20] | GRATALOUP S,BONIJOLY D,BROSSE E,et al. A site selection methodology for CO2 underground storage in deep saline aquifers:case of the Paris Basin[J]. Energy Procedia,2009,1:2929-2936. doi: 10.1016/j.egypro.2009.02.068 |
[21] | KOVSCEK A R. Screening criteria for CO2 storage in oil reservoirs[J]. Petroleum Science and Technology,2002,20(7/8):841-866. |
[22] | MYER L R , BENSON S M , BYRER C , et al. The GEO-SEQ project: a status report[C]. Greenhouse Gas Control Technologies 6th International Conference, 2003: 1625-1628. |
[23] | 刘廷,马鑫,刁玉杰,等. 国内外CO2地质封存潜力评价方法研究现状[J]. 中国地质调查,2021,8(4):101-108. |
[24] | 张森琦, 郭建强. 中国二氧化碳地质储存地质基础及场地地质评价[M]. 北京: 地质出版社, 2011. |
[25] | WEI N,LI X C,WANG Y,et al. A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO2 storage in China[J]. International Journal of Greenhouse Gas Control,2013(12):231-246. |
[26] | 中国21世纪议程管理中心, 中国地质调查局水文地质环境地质调查中心. 中国二氧化碳地质封存选址指南研究[M]. 北京: 地质出版社, 2012. |
[27] | 范基姣,贾小丰,张森琦,等. CO2地质储存潜力与适宜性评价方法及初步评价[J]. 水文地质工程地质,2011,38(6):108-112. |
[28] | 霍传林. 中国近海二氧化碳海底封存潜力评估和封存区域研究[D]. 大连: 大连海事大学, 2014. |
[29] | 周泽兴. 火电厂排放CO2的分离回收和固定技术的研究开发现状[J]. 环境工程学报,1993(1):56-73. |
[30] | 匡建超,王众,霍志磊. 中国二氧化碳捕捉与封存(CCS)技术早期实施方案构建及评价研究[J]. 中外能源,2012,17(12):17-23. |
[31] | 张国华,张建培. 东海陆架盆地构造反转特征及成因机制探讨[J]. 地学前缘,2015,22(1):260-271. |
[32] | 索艳慧,李三忠,戴黎明,等. 东海陆架盆地构造单元划分与特征[J]. 海地质与第四纪地质,2010,30(6):49-58. |
[33] | 曾久岭, 王常青, 席敏红. 东海区域地质构造单元划分及地质结构特征[C]//第五次东海石油地质研讨会论文集. 2004. |
[34] | 冯晓杰,蔡东升. 东海陆架盆地中新生代构造演化对烃源岩分布的控制作用[J]. 中国海上油气(工程),2006,18(6):372-375. |
[35] | 冯晓杰, 蔡东升. 东海陆架盆地中新生代构造演化及其对油气分布的控制作用[C]//中国油气勘探潜力及可持续发展论文集. 第二届中国石油地质年会, 2006. |
[36] | 刘斌. 利用重、磁异常研究东海陆架盆地的断裂构造[D]. 西安: 长安大学, 2010. |
[37] | BASAVA-REDDI L , GORECKI C , WILDGUST N . Development of storage coefficients for carbon dioxide storage in deep saline formations[C]//Second EAGE CO2 Geological Storage Workshop 2010. 2010. |
[38] | 郑长远,白刚刚,师延霞,等. 西宁盆地级(D级) CO2地质储存区域适宜性研究[J]. 青海大学学报(自然科学版),2016,34(4):1-8. |
[39] | 中华人民共和国能源部. 油气储层评价方法 SY/T 6285—1997[S]. 北京: 石油工业出版社, 1998. |
[40] | 中华人民共和国地震局. 工程场地地震安全性评价 GB 17741—2005[S]. 北京: 中国标准出版社, 2005. |
[41] | 陈建文,梁杰,张银国,等. 中国海域油气资源潜力分析与黄东海海域油气资源调查进展[J]. 海洋地质与第四纪地质,2019,39(6):1-29. |
[42] | 杨传胜,杨长清,李刚,等. 东海陆架盆地中—新生界油气勘探研究进展与前景分析[J]. 海洋地质与第四纪地质,2018,38(2):136-147. doi: 10.16562/j.cnki.0256-1492.2018.02.014 |
[43] | 杨长清,韩宝富,杨艳秋,等. 东海陆架盆地中生界油气调查进展与面临的挑战[J]. 海洋地质前沿,2017,33(4):1-8. doi: 10.16028/j.1009-2722.2017.04001 |
[44] | 金春爽,乔德武,须雪豪,等. 东海陆架盆地南部油气资源前景与选区[J]. 中国地质,2015,42(5):1601-1609. doi: 10.3969/j.issn.1000-3657.2015.05.027 |
[45] | 姜亮. 东海陆架盆地油气资源勘探现状及含油气远景[J]. 中国海上油气(地质),2003,17(1):5. |
[46] | 蔡乾忠. 中国海域油气地质学[M]. 北京: 海洋出版社, 2005. |
[47] | 姜亮, 田海芹, 马玉新, 等. 东海陆架盆地西湖凹陷含油气系统及目标评价[M]. 东营: 石油大学出版社, 2000. |
[48] | BACHU S,ADAMS J J. Sequestration of CO2 in geological media in response to climate change:capacity of deep saline aquifers to sequester CO2 in solution[J]. Energy Conversion and Management,2003,44(20):3151-3175. doi: 10.1016/S0196-8904(03)00101-8 |
[49] | BACHU S,SHAW J. Evaluation of the CO2 sequestration capacity in Alberta's oil and gas reservoirs at depletion and the effect of underlying aquifers[J]. Journal of Canadian Petroleum Technology,2003,42(9):51-61. |
[50] | 杨国强,苏小四,杜尚海,等. 松辽盆地CO2地质储存适宜性评价[J]. 地球学报,2011,32(5):570-580. |
The hierarchical evaluation model of carbon sequestration potential
Location of onshore basins and thermal power plants along the East China Sea
Division of tectonic units in the East China Sea Shelf Basin
The suitability evaluation index system of CO2 sequestration
The suitability evaluation grade of CO2 sequestration in the East China Sea Shelf Basin