2024 Vol. 40, No. 2
Article Contents

LUO Chuanxiu, WANG Xiaojing, SU Xiang, MA Ting, YANG Yiping, DU Shuhuan, YANG Zijie, SUN Yuhui, LIANG Shiqing. Application and prospect of marine sedimentary evidence toclimate change in low-latitude processes[J]. Marine Geology Frontiers, 2024, 40(2): 1-10. doi: 10.16028/j.1009-2722.2022.155
Citation: LUO Chuanxiu, WANG Xiaojing, SU Xiang, MA Ting, YANG Yiping, DU Shuhuan, YANG Zijie, SUN Yuhui, LIANG Shiqing. Application and prospect of marine sedimentary evidence toclimate change in low-latitude processes[J]. Marine Geology Frontiers, 2024, 40(2): 1-10. doi: 10.16028/j.1009-2722.2022.155

Application and prospect of marine sedimentary evidence toclimate change in low-latitude processes

More Information
  • Based on domestic and international research, this paper preliminarily summarizes the spatial distribution and temporal changes of the Walker circulation, El Niño Southern Oscillation (ENSO), Tropical Convergence Zone (ITCZ), and other low-latitude processes in the Indo-Pacific Warm Pool (IPWP) region, as well as their research methods, and points out current problems in the research. We found that the ENSO variability gradually increased in the early Holocene and the late medieval climate anomaly period (1000–700 a BP), and then introduced the northward movement of ITCZ during the Bølling-Allerød Warm Period and the pre-Boreal period (10.3 ka BP–9.5 ka BP), and the southward movement during the Younger Dryas event (12.5–11.5 ka BP) and the North Atlantic cold period (7.5 to 5 ka BP from now). In addition, we discussed the long-term orbital period of the low-latitude process. During the LGM (Last Glacial Maximum), a southerly ITCZ frontal system appeared in the equatorial eastern Pacific Ocean; and even during the 1.65 Ma ice age, there was evidence of rapid southward movement of ITCZ. At present, there are many research methods for marine sediments. The good applications of grain size analysis, clay minerals, terrestrial dust, elements and isotopes, and foraminifera in the prediction of ENSO and ITCZ displacement in marine sediments were summarized. Finally, based on the progress of marine pollen research, it is suggested to use the response of terrestrial ecosystems to climate changes as a starting point, and conduct palynological analysis to explore the changes in low-latitude processes such as terrestrial vegetation, climate, fires, and sea-land atmospheric circulation, to clarify the evolution of the Walker circulation (ENSO) and the impact of ITCZ displacement.

  • 加载中
  • [1] 李克让,周春平,沙万英. 西太平洋暖池基本特征及其对气候的影响[J]. 地理学报,1998,53(6):511-519. doi: 10.3321/j.issn:0375-5444.1998.06.006

    CrossRef Google Scholar

    [2] WEBSTER P J,MAGANA V O,PALMER T N,et al. Monsoons:processes,predictability,and the prospects for prediction[J]. Journal of Geophysical Research,1998,103(C7):14451-14510. doi: 10.1029/97JC02719

    CrossRef Google Scholar

    [3] CANE M A. A role for the Tropical Pacific[J]. Science,1998,282:59-61. doi: 10.1126/science.282.5386.59

    CrossRef Google Scholar

    [4] DANG H W,JIAN Z M,WANG Y,et al. Pacific warm pool subsurface heat sequestration modulated Walker circulation and ENSO activity during the Holocene[J]. Science Advances,2020,6(42):402-416.

    Google Scholar

    [5] WANG P X. Global monsoon in a geological perspective[J]. Chinese Science Bulletin,2009,54(7):1113-1136. doi: 10.1007/s11434-009-0169-4

    CrossRef Google Scholar

    [6] DAI A G,WIGLEY T M L. Global Patterns of ENSO-induced Precipitation[J]. Geophysical Research Letters,2000,27(9):1283-1286. doi: 10.1029/1999GL011140

    CrossRef Google Scholar

    [7] SAGAWA T,YOKOYAMA Y,IKEHARA M,et al. Shoaling of the western equatorial Pacific thermocline during the last glacial maximum inferred from multispecies temperature reconstruction of planktonic foraminifera[J]. Palaeogeography Palaeoclimatology Palaeoecology,2012,346-347:120-129. doi: 10.1016/j.palaeo.2012.06.002

    CrossRef Google Scholar

    [8] TAUFIK M,TORFS P J J F,UIJLENHOET R,et al. Amplification of wildfire area burnt by hydrological drought in the humid tropics[J]. Nature Climate Change,2017,7(6):428-433. doi: 10.1038/nclimate3280

    CrossRef Google Scholar

    [9] PAN X H,CHIN M,ICHOKU C M,et al. Connecting Indonesian fires and drought with the type of El Nino and phase of the Indian Ocean Dipole During 1979–2016[J]. Journal of Geophysical Research:Atmospheres,2018,123(15):7974-7988.

    Google Scholar

    [10] YANG Y X,HUANG F,WANG D X. The variation of the INDO-PACIFIC Warm Pool[J]. Oceanologia et Limnologia Sinica,2007,38(4):296-303.

    Google Scholar

    [11] GORGUES T,MENKES C,SLEMONS L,et al. Revisiting the La Nia 1998 phytoplankton blooms in the equatorial Pacific[J]. Deep-Sea Research I,2010,57(4):567-576. doi: 10.1016/j.dsr.2009.12.008

    CrossRef Google Scholar

    [12] PHIPPS S J,BROWN J N. Understanding ENSO dynamics through the exploration of past climates[J]. IOP Conference Series:Earth and Environmental Science,2010,9(1):012010.

    Google Scholar

    [13] 张洋,徐继尚,李广雪,等. 西太平洋暖池冰期旋回中的类 ENSO 式演化及其驱动机制[J]. 地学前缘,2022,29(4):168.

    Google Scholar

    [14] JIAN Z M,WANG Y,DANG H W,et al. Half-precessional cycle of thermocline temperature in the western equatorial Pacific and its bihemispheric dynamics[J]. Proceedings of the National Academy of Sciences,2020,117(13):7044-7051. doi: 10.1073/pnas.1915510117

    CrossRef Google Scholar

    [15] PIERREHUMBERT R T. Climate change and the tropical Pacific:the sleeping dragon wakes[J]. Proceedings of the National Academy ofSciences,2000,97(4):1355-1358. doi: 10.1073/pnas.97.4.1355

    CrossRef Google Scholar

    [16] AYLIFFE L K,GAGAN M K,ZHAO J X,et al. Rapid interhemispheric climate links via the Australasian monsoon during the last deglaciation[J]. Nature Communications,2013,4(1):3908. doi: 10.1038/ncomms3908

    CrossRef Google Scholar

    [17] YAN X H,HO C R,ZHENG Q,et al. Temperature and size variabilities of the Western Pacific Warm Pool[J]. Science,1992,258(5088):1643-1645. doi: 10.1126/science.258.5088.1643

    CrossRef Google Scholar

    [18] 王晓燕,李保华. 浅谈浮游有孔虫群落海水古温度估算[J]. 微体古生物学报,2006,23(2):182-190.

    Google Scholar

    [19] RONGE T A,NÜRNBERG D,TIEDEMANN R. Plio-Pleistocene variability of the East Pacific thermocline and atmospheric systems[J]. Paleoceanography and Paleoclimatology,2020,35(1):e2019PA003758. doi: 10.1029/2019PA003758

    CrossRef Google Scholar

    [20] HONJO S. Fluxes of particles to the interior of the open oceans[J]. Particle Flux in Open Ocean, 1996.

    Google Scholar

    [21] MERTENSK N J M,LYNN M,AYCARD M,et al. Coccolithophores as palaeoecological indicators for shifts of the ITCZ in the Cariaco Basin during the late Quaternary[J]. Journal of Quaternary Science,2009,24(2):159-174. doi: 10.1002/jqs.1194

    CrossRef Google Scholar

    [22] SACHS J P,BLOIS J L,MCGEE T,et al. Southward shift of the Pacific ITCZ during the Holocene[J]. Paleoceanography and Paleoclimatology,2018,33(12):1383-1395. doi: 10.1029/2018PA003469

    CrossRef Google Scholar

    [23] ZHENG X F,LI A C,WAN S M,et al. ITCZ and ENSO pacing on East Asian winter monsoon variation during the Holocene:Sedimentological evidence from the Okinawa Trough[J]. Journal of Geophysical Research:Oceans,2014,119(7):4410-4429.

    Google Scholar

    [24] YU K F,ZHAO J X,SHI Q,et al. Recent massive coral mortality events in the South China Sea:was global warming and ENSO variability responsible?[J]. Chemical Geology,2012,320:54-65.

    Google Scholar

    [25] COBB K M,CHARLES C D,CHENG H,et al. El Niño/Southern Oscillation and tropical Pacific climate during the last millennium[J]. Nature,2003,424(6946):271-276. doi: 10.1038/nature01779

    CrossRef Google Scholar

    [26] CORRÈGE T,DELCROIX T,RÉCY J,et al. Evidence for stronger El Niño,Southern Oscillation (ENSO) events in a mid-Holocene massive coral[J]. Paleoceanography,2000,15(4):465-470. doi: 10.1029/1999PA000409

    CrossRef Google Scholar

    [27] MCGREGOR H V,FISCHER M J,GAGAN M K,et al. A weak El Niño/Southern Oscillation with delayed seasonal growth around 4,300 years ago[J]. Nature Geoscience,2013,6(11):949-953. doi: 10.1038/ngeo1936

    CrossRef Google Scholar

    [28] TIERNEY J E,ABRAM N J,ANCHUKAITIS K J,et al. Tropical sea surface temperatures for the past four centuries reconstructed from coral archives[J]. Paleoceanography,2015,30(3):226-252. doi: 10.1002/2014PA002717

    CrossRef Google Scholar

    [29] TUDHOPE A W,CHILCOTT C P,MCCULLOCH M T,et al. Variability in the El Niño-Southern Oscillation through a glacial-interglacial cycle[J]. Science,2001,291(5508):1511-1517. doi: 10.1126/science.1057969

    CrossRef Google Scholar

    [30] COLE J E,FAIRBANKS R G,SHEN G T. Recent variability in the Southern Oscillation:Isotopic results from a Tarawa Atoll coral[J]. Science,1993,260(5115):1790-1793. doi: 10.1126/science.260.5115.1790

    CrossRef Google Scholar

    [31] YU K F,ZHAO J X,WEI G J,et al. Mid–late Holocene monsoon climate retrieved from seasonal Sr/Ca and δ18O records of Poriteslutea corals at Leizhou Peninsula,northern coast of South China Sea[J]. Global and Planetary Change,2005,47(2-4):301-316. doi: 10.1016/j.gloplacha.2004.10.018

    CrossRef Google Scholar

    [32] JIANG L L,YU K F. ENSO variability during the Medieval Climate Anomaly as recorded by Porites corals from the northern South China Sea[J]. Paleoceanography and Paleoclimatology,2021,36(4):e2020PA004173. doi: 10.1029/2020PA004173

    CrossRef Google Scholar

    [33] TEGEN I,LACIS A A,FUNG I. The influence on climate forcing of mineral aerosols from disturbed soils[J]. Nature,1996,380(6573):419-422. doi: 10.1038/380419a0

    CrossRef Google Scholar

    [34] WINDOM H L. Eolian contributions to marine sediments[J]. Journal of Sedimentary Research,1975,45(2):520-529.

    Google Scholar

    [35] JEONG G Y,KIM J Y,SEO J,et al. Long-range transport of giant particles in Asian dust identified by physical,mineralogical,and meteorological analysis[J]. Atmospheric Chemistry and Physics,2014,14(1):505-521. doi: 10.5194/acp-14-505-2014

    CrossRef Google Scholar

    [36] GUERZONI S,MOLINAROLI E,CHESTER R. Saharan dust inputs to the western Mediterranean Sea:Depositional patterns,geochemistry and sedimentological implications[J]. Deep Sea Research,Part II:Topical Studies in Oceanography,1997,44(3/4):631-654.

    Google Scholar

    [37] CHELTON D B, ESBENSEN S K, SCHLAX M G, et al. Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific[J]. Journal of Climate, 14(7): 1479-1498.

    Google Scholar

    [38] KOUTAVAS A, LYNCH-STIEGLITZ J. Variability of the marine ITCZ over the eastern Pacific during the past 30, 000 years: Regional perspective and global context [M]//The Hadley circulation: Present, past and future. Dordrecht: Springer Netherlands, 2004: 347-369.

    Google Scholar

    [39] MOLINA-CRUZ A. The relation of the southern trade winds to upwelling processes during the last 75,000 years[J]. Quaternary Research,1977,8(3):324-338. doi: 10.1016/0033-5894(77)90075-8

    CrossRef Google Scholar

    [40] POVEA P,CACHO I,MORENO A,et al. Atmosphere-ocean linkages in the eastern equatorial pacific over the early Pleistocene[J]. Paleoceanography,2016,31(5):522-538. doi: 10.1002/2015PA002883

    CrossRef Google Scholar

    [41] VAN DER LUBBE H J L,HALL I R,BARKER S,et al. Indo-Pacific Walker circulation drove Pleistocene African aridification[J]. Nature,2021,598(7882):618-623. doi: 10.1038/s41586-021-03896-3

    CrossRef Google Scholar

    [42] SCHMID M W,SPEROH J. Meridional shifts in the marine ITCZ and the tropical hydrologic cycle over the last three glacial cycles[J]. Paleoceanography,2011,26(1):PA1206.

    Google Scholar

    [43] STOTT L,POULSEN C,LUND S,et al. Super ENSO and global climate oscillations at millennial time scales[J]. Science,2002,297(5579):222-226. doi: 10.1126/science.1071627

    CrossRef Google Scholar

    [44] TIAN Z P,JIANG D B. Weakening and eastward shift of the tropical Pacific Walker circulation during the Last Glacial Maximum[J]. Boreas,2019,49(1):200-210.

    Google Scholar

    [45] ClEMENT A C,CANE M A,SEAGER R. An orbitally driven tropical source for abrupt climate change[J]. Journal of Climate,2001,14(11):2369-2375. doi: 10.1175/1520-0442(2001)014<2369:AODTSF>2.0.CO;2

    CrossRef Google Scholar

    [46] PRASAD S,ANOOP A,RIEDEL N,et al. Prolonged monsoon droughts and links to Indo-Pacific Warm Pool:a Holocene record from Lonar Lake,central India[J]. Earth and Planetary Science Letters,2014,391:171-182. doi: 10.1016/j.jpgl.2014.01.043

    CrossRef Google Scholar

    [47] MOY C M,SELTZER G O,RODBELL D T,et al. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch[J]. Nature,2002,420(6912):162-165. doi: 10.1038/nature01194

    CrossRef Google Scholar

    [48] HOPE G. Environmental change and fire in the Owen Stanley Ranges,Papua New Guinea[J]. Quaternary Science Reviews,2009,28(23/24):2261-2276. doi: 10.1016/j.quascirev.2009.04.012

    CrossRef Google Scholar

    [49] XU J,HOLBOURN A,KUHNT W,et al. Changes in the thermocline structure of the Indonesian outflow during Terminations I and II[J]. Earth and Planetary Science Letters,2008,273(1/2):152-162. doi: 10.1016/j.jpgl.2008.06.029

    CrossRef Google Scholar

    [50] BOLLIET T,HOLBOURN A,KUHN T W,et al. Mindanao Dome variability over the last 160 kyr:Episodic glacial cooling of the West Pacific Warm Pool[J]. Paleoceanography,2011,26(1):PA1208.

    Google Scholar

    [51] DANG H W,JIAN Z M,BASSINOT F,et al. Decoupled Holocene variability in surface and thermocline water temperatures of the Indo-Pacific Warm Pool[J]. Geophysical Research Letters,2012,39(1):L01701.

    Google Scholar

    [52] WHITE S M,RAVELO A C,POLISSAR P J. Dampened El Niño in the Early and Mid‐Holocene Due to Insolation‐Forced Warming/Deepening of the Thermocline[J]. Geophysical Research Letters,2018,45(1):316-326. doi: 10.1002/2017GL075433

    CrossRef Google Scholar

    [53] FORD H L,RAVELO A C,POLISSAR P J. Reduced El Niño–Southern Oscillation during the Last Glacial Maximum[J]. Science,2015,347(6219):255-258. doi: 10.1126/science.1258437

    CrossRef Google Scholar

    [54] GAGAN M K,HENDY E J,HABERLE S G,et al. Post-glacial evolution of the Indo-Pacific Warm Pool and El Nin˜o-Southern oscillation[J]. Quaternary International,2004,118:127-143.

    Google Scholar

    [55] CRAUSBAY S D,MARTIN P H,KELLY E F. Tropical montane vegetation dynamics near the upper cloud belt strongly associated with a shifting ITCZ and fire[J]. Journal of Ecology,2015,103(4):891-903. doi: 10.1111/1365-2745.12423

    CrossRef Google Scholar

    [56] MARTIN P H,SHERMAN R E,FAHEY T J. Tropical montane forest ecotones:climate gradients,natural disturbance,and vegetation zonation in the Cordillera Central,Dominican Republic[J]. Journal of Biogeography,2007,34(10):1792-1806. doi: 10.1111/j.1365-2699.2007.01726.x

    CrossRef Google Scholar

    [57] CAROLIN S A,COBB K M,ADKINS J F,et al. Varied Response of Western Pacific Hydrology to Climate Forcings over the Last Glacial Period[J]. Science,2013,340(6140):1564-1566. doi: 10.1126/science.1233797

    CrossRef Google Scholar

    [58] KAARS S V D,DECKKER P D. Pollen distribution in marine surface sediments offshore Western Australia[J]. Review of Palaeobotany & Palynology,2003,124(1/2):113-129.

    Google Scholar

    [59] CROUCH E M,MILDENHALL D C,NEIL H L,et al. Distribution of organic-walled marine and terrestrial palynomorphs in surface sediments,offshore eastern New Zealand[J]. Marine Geology,2010,270(1/4):235-256. doi: 10.1016/j.margeo.2009.11.004

    CrossRef Google Scholar

    [60] DAI L,WENG C Y. A survey on pollen dispersal in the western Pacific Ocean and its paleoclimatological significance as a proxy for variation of the Asian winter monsoon[J]. Science China:Earth Science,2010,40(7):893-902.

    Google Scholar

    [61] LUO C X,CHEN M H,XIANG R,et al. Modern pollen distribution in marine sediments from the northern part of the South China Sea[J]. Marine Micropaleontology,2014,108:41-56. doi: 10.1016/j.marmicro.2014.03.001

    CrossRef Google Scholar

    [62] LUO C X,JIANG W M CHEN C X,et al. Modern pollen distribution in the northeastern Indian Ocean and its significance[J]. International Journal of Biometeorology,2018,62(8):1471-1488. doi: 10.1007/s00484-018-1546-y

    CrossRef Google Scholar

    [63] PRABHU C N,SHANKAR R,ANUPAMA K,et al. A 200-ka pollen and oxygen-isotopic record from two sediment cores from the eastern Arabian Sea[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2004,214(4):309-321.

    Google Scholar

    [64] LUO C X,XIANG R,LIU J G,et al. Study of modern pollen distribution in the northeastern Indian Ocean and their application to paleoenvironment reconstruction[J]. Review of Palaeobotany and Palynology,2018,256:50-62. doi: 10.1016/j.revpalbo.2018.05.007

    CrossRef Google Scholar

    [65] SHULMEISTER J,LEES B G. Pollen evidence from tropical Australia for the onset of an ENSO-dominated climate at c. 4000 BP[J]. Holocene,1995,5(1):10-18. doi: 10.1177/095968369500500102

    CrossRef Google Scholar

    [66] PITTOCK A B. Climatic change and the patterns of variation in Australian rainfall[J]. Search,1975,6(11):498-504.

    Google Scholar

    [67] LUO Y L,SUN X J,CHEN H C. Millions of years of natural fire in northern South China Sea areas and climate:ODP1144 hole in deep sea sediment charcoal records[J]. Chinese Science Bulletin,2006,8:942-950.

    Google Scholar

    [68] XIAO X Y,HABERLE S G,SHEN J,et al. Postglacial fire history and interactions with vegetation and climate in southwestern Yunnan Province of China[J]. Climate of the Past,2017,13(6):1-23.

    Google Scholar

    [69] HAUG G H,HUGHEN K A,SIGMAN D M,et al. Southward migration of the Intertropical Convergence Zone through the Holocene[J]. Science,2001,293(5533):1304-1308. doi: 10.1126/science.1059725

    CrossRef Google Scholar

    [70] KAWAMURA H,HOLBOURN A,KUHNT W. Climate variability and land-ocean interactions in the Indo Pacific Warm Pool:a 460-ka palynological and organic geochemical record from the Timor Sea[J]. Marine Micropaleontology,2006,59(1):1-14. doi: 10.1016/j.marmicro.2005.09.001

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(637) PDF downloads(90) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint