Citation: | LUO Chuanxiu, WANG Xiaojing, SU Xiang, MA Ting, YANG Yiping, DU Shuhuan, YANG Zijie, SUN Yuhui, LIANG Shiqing. Application and prospect of marine sedimentary evidence toclimate change in low-latitude processes[J]. Marine Geology Frontiers, 2024, 40(2): 1-10. doi: 10.16028/j.1009-2722.2022.155 |
Based on domestic and international research, this paper preliminarily summarizes the spatial distribution and temporal changes of the Walker circulation, El Niño Southern Oscillation (ENSO), Tropical Convergence Zone (ITCZ), and other low-latitude processes in the Indo-Pacific Warm Pool (IPWP) region, as well as their research methods, and points out current problems in the research. We found that the ENSO variability gradually increased in the early Holocene and the late medieval climate anomaly period (1000–700 a BP), and then introduced the northward movement of ITCZ during the Bølling-Allerød Warm Period and the pre-Boreal period (10.3 ka BP–9.5 ka BP), and the southward movement during the Younger Dryas event (12.5–11.5 ka BP) and the North Atlantic cold period (7.5 to 5 ka BP from now). In addition, we discussed the long-term orbital period of the low-latitude process. During the LGM (Last Glacial Maximum), a southerly ITCZ frontal system appeared in the equatorial eastern Pacific Ocean; and even during the 1.65 Ma ice age, there was evidence of rapid southward movement of ITCZ. At present, there are many research methods for marine sediments. The good applications of grain size analysis, clay minerals, terrestrial dust, elements and isotopes, and foraminifera in the prediction of ENSO and ITCZ displacement in marine sediments were summarized. Finally, based on the progress of marine pollen research, it is suggested to use the response of terrestrial ecosystems to climate changes as a starting point, and conduct palynological analysis to explore the changes in low-latitude processes such as terrestrial vegetation, climate, fires, and sea-land atmospheric circulation, to clarify the evolution of the Walker circulation (ENSO) and the impact of ITCZ displacement.
[1] | 李克让,周春平,沙万英. 西太平洋暖池基本特征及其对气候的影响[J]. 地理学报,1998,53(6):511-519. doi: 10.3321/j.issn:0375-5444.1998.06.006 |
[2] | WEBSTER P J,MAGANA V O,PALMER T N,et al. Monsoons:processes,predictability,and the prospects for prediction[J]. Journal of Geophysical Research,1998,103(C7):14451-14510. doi: 10.1029/97JC02719 |
[3] | CANE M A. A role for the Tropical Pacific[J]. Science,1998,282:59-61. doi: 10.1126/science.282.5386.59 |
[4] | DANG H W,JIAN Z M,WANG Y,et al. Pacific warm pool subsurface heat sequestration modulated Walker circulation and ENSO activity during the Holocene[J]. Science Advances,2020,6(42):402-416. |
[5] | WANG P X. Global monsoon in a geological perspective[J]. Chinese Science Bulletin,2009,54(7):1113-1136. doi: 10.1007/s11434-009-0169-4 |
[6] | DAI A G,WIGLEY T M L. Global Patterns of ENSO-induced Precipitation[J]. Geophysical Research Letters,2000,27(9):1283-1286. doi: 10.1029/1999GL011140 |
[7] | SAGAWA T,YOKOYAMA Y,IKEHARA M,et al. Shoaling of the western equatorial Pacific thermocline during the last glacial maximum inferred from multispecies temperature reconstruction of planktonic foraminifera[J]. Palaeogeography Palaeoclimatology Palaeoecology,2012,346-347:120-129. doi: 10.1016/j.palaeo.2012.06.002 |
[8] | TAUFIK M,TORFS P J J F,UIJLENHOET R,et al. Amplification of wildfire area burnt by hydrological drought in the humid tropics[J]. Nature Climate Change,2017,7(6):428-433. doi: 10.1038/nclimate3280 |
[9] | PAN X H,CHIN M,ICHOKU C M,et al. Connecting Indonesian fires and drought with the type of El Nino and phase of the Indian Ocean Dipole During 1979–2016[J]. Journal of Geophysical Research:Atmospheres,2018,123(15):7974-7988. |
[10] | YANG Y X,HUANG F,WANG D X. The variation of the INDO-PACIFIC Warm Pool[J]. Oceanologia et Limnologia Sinica,2007,38(4):296-303. |
[11] | GORGUES T,MENKES C,SLEMONS L,et al. Revisiting the La Nia 1998 phytoplankton blooms in the equatorial Pacific[J]. Deep-Sea Research I,2010,57(4):567-576. doi: 10.1016/j.dsr.2009.12.008 |
[12] | PHIPPS S J,BROWN J N. Understanding ENSO dynamics through the exploration of past climates[J]. IOP Conference Series:Earth and Environmental Science,2010,9(1):012010. |
[13] | 张洋,徐继尚,李广雪,等. 西太平洋暖池冰期旋回中的类 ENSO 式演化及其驱动机制[J]. 地学前缘,2022,29(4):168. |
[14] | JIAN Z M,WANG Y,DANG H W,et al. Half-precessional cycle of thermocline temperature in the western equatorial Pacific and its bihemispheric dynamics[J]. Proceedings of the National Academy of Sciences,2020,117(13):7044-7051. doi: 10.1073/pnas.1915510117 |
[15] | PIERREHUMBERT R T. Climate change and the tropical Pacific:the sleeping dragon wakes[J]. Proceedings of the National Academy ofSciences,2000,97(4):1355-1358. doi: 10.1073/pnas.97.4.1355 |
[16] | AYLIFFE L K,GAGAN M K,ZHAO J X,et al. Rapid interhemispheric climate links via the Australasian monsoon during the last deglaciation[J]. Nature Communications,2013,4(1):3908. doi: 10.1038/ncomms3908 |
[17] | YAN X H,HO C R,ZHENG Q,et al. Temperature and size variabilities of the Western Pacific Warm Pool[J]. Science,1992,258(5088):1643-1645. doi: 10.1126/science.258.5088.1643 |
[18] | 王晓燕,李保华. 浅谈浮游有孔虫群落海水古温度估算[J]. 微体古生物学报,2006,23(2):182-190. |
[19] | RONGE T A,NÜRNBERG D,TIEDEMANN R. Plio-Pleistocene variability of the East Pacific thermocline and atmospheric systems[J]. Paleoceanography and Paleoclimatology,2020,35(1):e2019PA003758. doi: 10.1029/2019PA003758 |
[20] | HONJO S. Fluxes of particles to the interior of the open oceans[J]. Particle Flux in Open Ocean, 1996. |
[21] | MERTENSK N J M,LYNN M,AYCARD M,et al. Coccolithophores as palaeoecological indicators for shifts of the ITCZ in the Cariaco Basin during the late Quaternary[J]. Journal of Quaternary Science,2009,24(2):159-174. doi: 10.1002/jqs.1194 |
[22] | SACHS J P,BLOIS J L,MCGEE T,et al. Southward shift of the Pacific ITCZ during the Holocene[J]. Paleoceanography and Paleoclimatology,2018,33(12):1383-1395. doi: 10.1029/2018PA003469 |
[23] | ZHENG X F,LI A C,WAN S M,et al. ITCZ and ENSO pacing on East Asian winter monsoon variation during the Holocene:Sedimentological evidence from the Okinawa Trough[J]. Journal of Geophysical Research:Oceans,2014,119(7):4410-4429. |
[24] | YU K F,ZHAO J X,SHI Q,et al. Recent massive coral mortality events in the South China Sea:was global warming and ENSO variability responsible?[J]. Chemical Geology,2012,320:54-65. |
[25] | COBB K M,CHARLES C D,CHENG H,et al. El Niño/Southern Oscillation and tropical Pacific climate during the last millennium[J]. Nature,2003,424(6946):271-276. doi: 10.1038/nature01779 |
[26] | CORRÈGE T,DELCROIX T,RÉCY J,et al. Evidence for stronger El Niño,Southern Oscillation (ENSO) events in a mid-Holocene massive coral[J]. Paleoceanography,2000,15(4):465-470. doi: 10.1029/1999PA000409 |
[27] | MCGREGOR H V,FISCHER M J,GAGAN M K,et al. A weak El Niño/Southern Oscillation with delayed seasonal growth around 4,300 years ago[J]. Nature Geoscience,2013,6(11):949-953. doi: 10.1038/ngeo1936 |
[28] | TIERNEY J E,ABRAM N J,ANCHUKAITIS K J,et al. Tropical sea surface temperatures for the past four centuries reconstructed from coral archives[J]. Paleoceanography,2015,30(3):226-252. doi: 10.1002/2014PA002717 |
[29] | TUDHOPE A W,CHILCOTT C P,MCCULLOCH M T,et al. Variability in the El Niño-Southern Oscillation through a glacial-interglacial cycle[J]. Science,2001,291(5508):1511-1517. doi: 10.1126/science.1057969 |
[30] | COLE J E,FAIRBANKS R G,SHEN G T. Recent variability in the Southern Oscillation:Isotopic results from a Tarawa Atoll coral[J]. Science,1993,260(5115):1790-1793. doi: 10.1126/science.260.5115.1790 |
[31] | YU K F,ZHAO J X,WEI G J,et al. Mid–late Holocene monsoon climate retrieved from seasonal Sr/Ca and δ18O records of Poriteslutea corals at Leizhou Peninsula,northern coast of South China Sea[J]. Global and Planetary Change,2005,47(2-4):301-316. doi: 10.1016/j.gloplacha.2004.10.018 |
[32] | JIANG L L,YU K F. ENSO variability during the Medieval Climate Anomaly as recorded by Porites corals from the northern South China Sea[J]. Paleoceanography and Paleoclimatology,2021,36(4):e2020PA004173. doi: 10.1029/2020PA004173 |
[33] | TEGEN I,LACIS A A,FUNG I. The influence on climate forcing of mineral aerosols from disturbed soils[J]. Nature,1996,380(6573):419-422. doi: 10.1038/380419a0 |
[34] | WINDOM H L. Eolian contributions to marine sediments[J]. Journal of Sedimentary Research,1975,45(2):520-529. |
[35] | JEONG G Y,KIM J Y,SEO J,et al. Long-range transport of giant particles in Asian dust identified by physical,mineralogical,and meteorological analysis[J]. Atmospheric Chemistry and Physics,2014,14(1):505-521. doi: 10.5194/acp-14-505-2014 |
[36] | GUERZONI S,MOLINAROLI E,CHESTER R. Saharan dust inputs to the western Mediterranean Sea:Depositional patterns,geochemistry and sedimentological implications[J]. Deep Sea Research,Part II:Topical Studies in Oceanography,1997,44(3/4):631-654. |
[37] | CHELTON D B, ESBENSEN S K, SCHLAX M G, et al. Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific[J]. Journal of Climate, 14(7): 1479-1498. |
[38] | KOUTAVAS A, LYNCH-STIEGLITZ J. Variability of the marine ITCZ over the eastern Pacific during the past 30, 000 years: Regional perspective and global context [M]//The Hadley circulation: Present, past and future. Dordrecht: Springer Netherlands, 2004: 347-369. |
[39] | MOLINA-CRUZ A. The relation of the southern trade winds to upwelling processes during the last 75,000 years[J]. Quaternary Research,1977,8(3):324-338. doi: 10.1016/0033-5894(77)90075-8 |
[40] | POVEA P,CACHO I,MORENO A,et al. Atmosphere-ocean linkages in the eastern equatorial pacific over the early Pleistocene[J]. Paleoceanography,2016,31(5):522-538. doi: 10.1002/2015PA002883 |
[41] | VAN DER LUBBE H J L,HALL I R,BARKER S,et al. Indo-Pacific Walker circulation drove Pleistocene African aridification[J]. Nature,2021,598(7882):618-623. doi: 10.1038/s41586-021-03896-3 |
[42] | SCHMID M W,SPEROH J. Meridional shifts in the marine ITCZ and the tropical hydrologic cycle over the last three glacial cycles[J]. Paleoceanography,2011,26(1):PA1206. |
[43] | STOTT L,POULSEN C,LUND S,et al. Super ENSO and global climate oscillations at millennial time scales[J]. Science,2002,297(5579):222-226. doi: 10.1126/science.1071627 |
[44] | TIAN Z P,JIANG D B. Weakening and eastward shift of the tropical Pacific Walker circulation during the Last Glacial Maximum[J]. Boreas,2019,49(1):200-210. |
[45] | ClEMENT A C,CANE M A,SEAGER R. An orbitally driven tropical source for abrupt climate change[J]. Journal of Climate,2001,14(11):2369-2375. doi: 10.1175/1520-0442(2001)014<2369:AODTSF>2.0.CO;2 |
[46] | PRASAD S,ANOOP A,RIEDEL N,et al. Prolonged monsoon droughts and links to Indo-Pacific Warm Pool:a Holocene record from Lonar Lake,central India[J]. Earth and Planetary Science Letters,2014,391:171-182. doi: 10.1016/j.jpgl.2014.01.043 |
[47] | MOY C M,SELTZER G O,RODBELL D T,et al. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch[J]. Nature,2002,420(6912):162-165. doi: 10.1038/nature01194 |
[48] | HOPE G. Environmental change and fire in the Owen Stanley Ranges,Papua New Guinea[J]. Quaternary Science Reviews,2009,28(23/24):2261-2276. doi: 10.1016/j.quascirev.2009.04.012 |
[49] | XU J,HOLBOURN A,KUHNT W,et al. Changes in the thermocline structure of the Indonesian outflow during Terminations I and II[J]. Earth and Planetary Science Letters,2008,273(1/2):152-162. doi: 10.1016/j.jpgl.2008.06.029 |
[50] | BOLLIET T,HOLBOURN A,KUHN T W,et al. Mindanao Dome variability over the last 160 kyr:Episodic glacial cooling of the West Pacific Warm Pool[J]. Paleoceanography,2011,26(1):PA1208. |
[51] | DANG H W,JIAN Z M,BASSINOT F,et al. Decoupled Holocene variability in surface and thermocline water temperatures of the Indo-Pacific Warm Pool[J]. Geophysical Research Letters,2012,39(1):L01701. |
[52] | WHITE S M,RAVELO A C,POLISSAR P J. Dampened El Niño in the Early and Mid‐Holocene Due to Insolation‐Forced Warming/Deepening of the Thermocline[J]. Geophysical Research Letters,2018,45(1):316-326. doi: 10.1002/2017GL075433 |
[53] | FORD H L,RAVELO A C,POLISSAR P J. Reduced El Niño–Southern Oscillation during the Last Glacial Maximum[J]. Science,2015,347(6219):255-258. doi: 10.1126/science.1258437 |
[54] | GAGAN M K,HENDY E J,HABERLE S G,et al. Post-glacial evolution of the Indo-Pacific Warm Pool and El Nin˜o-Southern oscillation[J]. Quaternary International,2004,118:127-143. |
[55] | CRAUSBAY S D,MARTIN P H,KELLY E F. Tropical montane vegetation dynamics near the upper cloud belt strongly associated with a shifting ITCZ and fire[J]. Journal of Ecology,2015,103(4):891-903. doi: 10.1111/1365-2745.12423 |
[56] | MARTIN P H,SHERMAN R E,FAHEY T J. Tropical montane forest ecotones:climate gradients,natural disturbance,and vegetation zonation in the Cordillera Central,Dominican Republic[J]. Journal of Biogeography,2007,34(10):1792-1806. doi: 10.1111/j.1365-2699.2007.01726.x |
[57] | CAROLIN S A,COBB K M,ADKINS J F,et al. Varied Response of Western Pacific Hydrology to Climate Forcings over the Last Glacial Period[J]. Science,2013,340(6140):1564-1566. doi: 10.1126/science.1233797 |
[58] | KAARS S V D,DECKKER P D. Pollen distribution in marine surface sediments offshore Western Australia[J]. Review of Palaeobotany & Palynology,2003,124(1/2):113-129. |
[59] | CROUCH E M,MILDENHALL D C,NEIL H L,et al. Distribution of organic-walled marine and terrestrial palynomorphs in surface sediments,offshore eastern New Zealand[J]. Marine Geology,2010,270(1/4):235-256. doi: 10.1016/j.margeo.2009.11.004 |
[60] | DAI L,WENG C Y. A survey on pollen dispersal in the western Pacific Ocean and its paleoclimatological significance as a proxy for variation of the Asian winter monsoon[J]. Science China:Earth Science,2010,40(7):893-902. |
[61] | LUO C X,CHEN M H,XIANG R,et al. Modern pollen distribution in marine sediments from the northern part of the South China Sea[J]. Marine Micropaleontology,2014,108:41-56. doi: 10.1016/j.marmicro.2014.03.001 |
[62] | LUO C X,JIANG W M CHEN C X,et al. Modern pollen distribution in the northeastern Indian Ocean and its significance[J]. International Journal of Biometeorology,2018,62(8):1471-1488. doi: 10.1007/s00484-018-1546-y |
[63] | PRABHU C N,SHANKAR R,ANUPAMA K,et al. A 200-ka pollen and oxygen-isotopic record from two sediment cores from the eastern Arabian Sea[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2004,214(4):309-321. |
[64] | LUO C X,XIANG R,LIU J G,et al. Study of modern pollen distribution in the northeastern Indian Ocean and their application to paleoenvironment reconstruction[J]. Review of Palaeobotany and Palynology,2018,256:50-62. doi: 10.1016/j.revpalbo.2018.05.007 |
[65] | SHULMEISTER J,LEES B G. Pollen evidence from tropical Australia for the onset of an ENSO-dominated climate at c. 4000 BP[J]. Holocene,1995,5(1):10-18. doi: 10.1177/095968369500500102 |
[66] | PITTOCK A B. Climatic change and the patterns of variation in Australian rainfall[J]. Search,1975,6(11):498-504. |
[67] | LUO Y L,SUN X J,CHEN H C. Millions of years of natural fire in northern South China Sea areas and climate:ODP1144 hole in deep sea sediment charcoal records[J]. Chinese Science Bulletin,2006,8:942-950. |
[68] | XIAO X Y,HABERLE S G,SHEN J,et al. Postglacial fire history and interactions with vegetation and climate in southwestern Yunnan Province of China[J]. Climate of the Past,2017,13(6):1-23. |
[69] | HAUG G H,HUGHEN K A,SIGMAN D M,et al. Southward migration of the Intertropical Convergence Zone through the Holocene[J]. Science,2001,293(5533):1304-1308. doi: 10.1126/science.1059725 |
[70] | KAWAMURA H,HOLBOURN A,KUHNT W. Climate variability and land-ocean interactions in the Indo Pacific Warm Pool:a 460-ka palynological and organic geochemical record from the Timor Sea[J]. Marine Micropaleontology,2006,59(1):1-14. doi: 10.1016/j.marmicro.2005.09.001 |
The warm pool that defined by the area with SST higher than 28.5 ℃[10]