2023 Vol. 39, No. 9
Article Contents

WANG Kai, LIU Dongcheng, LIU Huafeng, HUANG Derong, CHU Feiyue. Application of multi-attribute analysis technology based on FCM algorithm in fine characterization of sedimentary microfacies: take T Gas Field in Xihu Sag as an example[J]. Marine Geology Frontiers, 2023, 39(9): 55-67. doi: 10.16028/j.1009-2722.2022.103
Citation: WANG Kai, LIU Dongcheng, LIU Huafeng, HUANG Derong, CHU Feiyue. Application of multi-attribute analysis technology based on FCM algorithm in fine characterization of sedimentary microfacies: take T Gas Field in Xihu Sag as an example[J]. Marine Geology Frontiers, 2023, 39(9): 55-67. doi: 10.16028/j.1009-2722.2022.103

Application of multi-attribute analysis technology based on FCM algorithm in fine characterization of sedimentary microfacies: take T Gas Field in Xihu Sag as an example

  • After 10+ years of exploration and development of the T Gas Field in the Xihu Sag in East China Sea, it is urgent to find potential targets in the Oligocene Huagang Formation. To identify channel sand body and its boundary accurately, 3D seismic data were used based on data of several offshore wells. The petrophysical properties of the target stratum were analyzed based on isochronous stratigraphic division, and the sedimentary microfacies were preliminarily specified by seismic sedimentology and logging data. In total, 48 seismic attributes were extracted in six categories. Correlation analysis was conducted on sand thickness and each attribute, from which three most meaningful seismic attributes were determined and selected. The three seismic attributes could well reflect the geological body boundaries and ideal lithology. In addition, multi-attribute clustering analysis based on the FCM (Fuzzy C-Means clustering) algorithm was performed, by which the effect of data dimension and redundancy were reduced. In addition, the distribution of distributary channel depositional system was studied, and RGB fusion display was carried out to highlight channel sand body boundaries. By combining the comprehensive analysis on geological structure and predicted sand body thickness, the favorable target area was proposed, which provides a basis for the subsequent rolling development of oilfield and the well location deployment.

  • 加载中
  • [1] 蔡义峰,熊婷,姚卫江,等. 地震多属性分析技术在薄层砂体预测中的应用[J]. 石油地球物理勘探,2017,52(2):140-145.

    Google Scholar

    [2] 张宪国,吴啸啸,黄德榕,等. 极限学习机驱动的地震多属性融合识别曲流带单一点坝[J]. 石油地球物理勘探,2021,56(6):1340-1350.

    Google Scholar

    [3] 刘豪,郭奕杉,赵春晨,等. 浅水三角洲砂体预测的地震属性方法探讨[J]. 西南石油大学学报(自然科学版),2016,38(4):71-81.

    Google Scholar

    [4] 刘英宪, 甘立琴, 徐中波, 等. 海上油田大井距条件下薄互储层刻画方法: 以渤海湾盆地P油田3井区馆陶组为例[J]. 大庆石油地质与开发, 2022, 41(5): 130-136.

    Google Scholar

    [5] 刘化清,苏明军,倪长宽,等. 薄砂体预测的地震沉积学研究方法[J]. 岩性油气藏,2018,30(2):1-11.

    Google Scholar

    [6] 徐立恒,马耀军,朱遂珲,等. 油田开发后期井间砂体识别[J]. 石油地球物理勘探,2019,54(2):390-397.

    Google Scholar

    [7] 常少英,刘玲利,崔钰瑶,等. 浅水三角洲薄砂层地震沉积表征技术:以准噶尔盆地芳草湖地区清水河组为例[J]. 岩性油气藏,2022,34(1):139-147.

    Google Scholar

    [8] 张晶玉,范廷恩,王海峰,等. 海相薄砂岩储层精细描述及地震沉积学认识:以南海珠江口盆地H油田为例[J]. 油气藏评价与开发,2021,11(5):680-687.

    Google Scholar

    [9] 曾洪流,赵贤正,朱筱敏,等. 隐性前积浅水曲流河三角洲地震沉积学特征:以渤海湾盆地冀中坳陷饶阳凹陷肃宁地区为例[J]. 石油勘探与开发,2015,42(5):566-576.

    Google Scholar

    [10] 齐淼,张化祥. 改进的模糊C-均值聚类算法研究[J]. 计算机工程与应用,2009,45(20):133-135.

    Google Scholar

    [11] 张阳,邱隆伟,李际,等. 基于模糊C均值地震属性聚类的沉积相分析[J]. 中国石油大学学报(自然科学版),2015,39(4):53-61.

    Google Scholar

    [12] 徐彬,李建明,张永庶,等. T-R旋回层序在陆相盐湖盆地中的应用:以柴西南英西地区下干柴沟组上段为例[J]. 断块油气田,2020,27(4):412-417.

    Google Scholar

    [13] 董春梅,赵仲祥,张宪国,等. 西湖凹陷中北部花港组物源及沉积相分析[J]. 东北石油大学学报,2018,42(5):25-34.

    Google Scholar

    [14] 宋小勇,储呈林,芮志峰. 东海盆地西湖凹陷构造样式及其演化[J]. 高校地质学报,2010,16(1):86-93.

    Google Scholar

    [15] 徐艳霞,胡明毅,梁建设,等. 东海盆地西湖凹陷渐新统花港组物源分析[J]. 石油天然气学报,2010,32(5):176-179.

    Google Scholar

    [16] 武法东, 周平. 东海陆架盆地西湖凹陷第三系层序地层与沉积体系分析[M]. 北京: 地质出版社, 2000.

    Google Scholar

    [17] 王天云,韩小锋,许海红,等. 无监督神经网络地震属性聚类方法在沉积相研究中的应用[J]. 石油地球物理勘探,2021,56(2):372-379.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(17)

Tables(1)

Article Metrics

Article views(465) PDF downloads(52) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint