2023 Vol. 39, No. 3
Article Contents

TANG Lichao, YUE Yuanfu. Application and uncertainty analysis of beachrock to Mid-late Holocene sea-level reconstruction in the northern South China Sea[J]. Marine Geology Frontiers, 2023, 39(3): 1-19. doi: 10.16028/j.1009-2722.2022.049
Citation: TANG Lichao, YUE Yuanfu. Application and uncertainty analysis of beachrock to Mid-late Holocene sea-level reconstruction in the northern South China Sea[J]. Marine Geology Frontiers, 2023, 39(3): 1-19. doi: 10.16028/j.1009-2722.2022.049

Application and uncertainty analysis of beachrock to Mid-late Holocene sea-level reconstruction in the northern South China Sea

More Information
  • The characteristics of the past sea-level change have important scientific and practical significance for understanding the process of the modern sea-level change, and predicting future scenarios. Beachrock, as a unique sedimentary rock in coastal intertidal zones in tropical and subtropical regions, is an important indicator of coastal change and the past sea-level elevation. However, due to the change of dynamic conditions after the formation of beachrock, the different dating methods, the estimation of indicative range represented by beachrock and error analysis, the results of past sea-level reconstruction based on beachrock are still controversial and uncertain. Therefore, we analyze and summarize the progress of sea-level reconstruction of Mid-late Holocene based on beachrocks in the northern South China Sea, as well as the existing problems and potential opportunities in sea-level research. The uncertainty of sea-level reconstruction based on beachrock is further quantitatively studied from the aspects of the formation age of beachrock and the elevation change after the formation of beachrock . At the same time, the high-precision elevation measurement and U-Th dating of three in-situ coral reefs (one large massive Porites and two Porites microatolls) along the east coast of Hainan Island in the northern South China Sea were conducted, and six new sea-level data are obtained. In conjunction with Glacial Isostatic Adjustment (GIA) and ICE-5G model results, they were applied to the reliability analysis and comparison of the reconstructed Mid-late Holocene sea level in the north of the South China Sea based on beachrocks. The uncertainty analysis and results indicate that the accuracy of sea-level reconstruction result is further improved after the correction of age and elevation, which can provide reference for the uncertainty and reliability analysis of the reconstructed sea-level based on other sea-level indicators.

  • 加载中
  • [1] KOPP R E,KEMP A C,BITTERMANN K,et al. Temperature-driven global sea-level variability in the Common Era[J]. PNAS,2016,113(11):E1434.

    Google Scholar

    [2] WEBSTER J M,GEORGE N P J,BEAMAN R J,et al. Submarine landslides on the Great Barrier Reef shelf edge and upper slope:a mechanism for generating tsunamis on the north-east Australian coast?[J]. Marine Geology,2015,371(1):120-129.

    Google Scholar

    [3] ZHANG Y Z,XIE J Z,LIU L. Investigating sea-level change and its impact on Hong Kong's coastal environment[J]. Geographic Information Sciences,2011,17(2):105-112.

    Google Scholar

    [4] FREDERIKSE T, LANDERER F,CARON L,et al. The causes of sea-level rise since 1900[J]. Nature,2020,584(7821):393-397. doi: 10.1038/s41586-020-2591-3

    CrossRef Google Scholar

    [5] LIU W C,HUANG W C. Influences of sea level rise on tides and storm surges around the Taiwan coast[J]. Continental Shelf Research,2018,173:9-13.

    Google Scholar

    [6] WILES E,GREEN A N,COOPER J A G. Rapid beachrock cementation on a South African beach:linking morphodynamics and cement style[J]. Sedimentary Geology,2018,378(10):13-18.

    Google Scholar

    [7] BONADUCE A,PINARDI N,ODDO P,et al. Sea-level variability in the Mediterranean Sea from altimetry and tide gauges[J]. Climate Dynamics,2016,47(9/10):1-16.

    Google Scholar

    [8] CHEN X Y,ZHANG X B,CHURCH J A,et al. The increasing rate of global mean sea-level rise during 1993–2014[J]. Nature Climate Change,2017,7(7):492-495. doi: 10.1038/nclimate3325

    CrossRef Google Scholar

    [9] CHURCH J A,WHITE N J. Sea-level rise from the late 19th to the early 21st Century[J]. Surveys in Geophysics,2011,32(4):585-602.

    Google Scholar

    [10] DEAN R G,HOUSTON J R. Recent sea level trends and accelerations:comparison of tide gauge and satellite results[J]. Coastal Engineering,2013,75(5):4-9.

    Google Scholar

    [11] 刘振夏. 中国现代海平面变化及影响[J]. 海洋开发与管理,1991,8(3):17-20.

    Google Scholar

    [12] 胡志博,郭金运,谭争光,等. 由TOPEX/Poseidon和验潮站监测香港海平面变化[J]. 大地测量与地球动力学,2014,34(4):56-59.

    Google Scholar

    [13] 李大炜,李建成,团文征. 利用卫星测高与验潮站数据监测越南近海海平面变化[J]. 测绘通报,2017,1(6):1-4.

    Google Scholar

    [14] 陆青,左军成,吴灵君. 热带太平洋海平面低频变化[J]. 海洋学报,2017,39(7):43-52.

    Google Scholar

    [15] 汤超莲,游大伟,陈特固,等. 1986―2008年广东沿海海平面变化趋势[J]. 热带地理,2009,29(5):423-428.

    Google Scholar

    [16] 余克服,陈特固. 南海北部晚全新世高海平面及其波动的海滩沉积证据[J]. 地学前缘,2009,16(6):138-145.

    Google Scholar

    [17] ZONG Y Q. Mid-Holocene sea-level highstand along the Southeast Coast of China[J]. Quaternary International,2004,117(1):55-67. doi: 10.1016/S1040-6182(03)00116-2

    CrossRef Google Scholar

    [18] XIONG H X,ZONG Y Q,PENG Q. Holocene sea-level history of the northern coast of South China Sea[J]. Quaternary Science Reviews,2018,194(15):12-26.

    Google Scholar

    [19] 乐远福,唐立超,余克服. 北大西洋沿岸过去2 000年海平面变化的若干重要特征[J]. 海洋地质前沿,2022,38(6):1-15.

    Google Scholar

    [20] 乐远福. 南海北部全新世以来海平面变化特征及未来趋势预测[J]. 海洋地质前沿,2023,39(2):1-16.

    Google Scholar

    [21] 黄金森,朱袁智,沙庆安. 西沙群岛现代海滩岩岩石学初见[J]. 地质科学,1978,13(4):358-364.

    Google Scholar

    [22] 李平日. 华南全新世海滩岩及其古地理意义[J]. 海洋地质与第四纪地质,1988,1(4):25-33.

    Google Scholar

    [23] 王绍鸿. 福建全新世海滩岩及其地质意义[J]. 福建师范大学学报(自然科学版),1995,1(4):106-112.

    Google Scholar

    [24] 赵希涛,沙庆安,冯文科. 海南岛全新世海滩岩[J]. 地质科学,1978,1(2):67-77,98,103-105.

    Google Scholar

    [25] 朱长歧,周斌,刘海峰. 南海海滩岩的细观结构及其基本物理力学性质研究[J]. 岩石力学与工程学报,2015,34(4):683-693.

    Google Scholar

    [26] DARYONO L R,NAKASHIMA K,KAWASAKI S,et al. Sediment characteristics of beachrock:a baseline investigation based on microbial induced carbonate precipitation at Krakal-Sadranan Beach,Yogyakarta,Indonesia[J]. Applied Sciences,2020,10(2):520. doi: 10.3390/app10020520

    CrossRef Google Scholar

    [27] FALKENROTH M,SCHNEIDER B,HOFFMANN G. Beachrock as sea-level indicator:a case study at the coastline of Oman (Indian Ocean)[J]. Quaternary Science Reviews,2019,206(15):81-98.

    Google Scholar

    [28] GASSE F,FONTES J C,CAMPO E V,et al. Holocene environmental changes in Bangong Co Basin (Western Tibet). Part 4:Discussion and conclusions[J]. Palaeogeography,1996,120(1/2):79-92.

    Google Scholar

    [29] 孙金龙,徐辉龙. 中国的海滩岩研究与进展[J]. 热带海洋学报,2009,1(2):103-108.

    Google Scholar

    [30] 詹文欢,刘以宣. 粤东沿海全新世海滩岩的特征及其所反映的海平面变化[J]. 热带海洋学报,1998,17(2):24-31.

    Google Scholar

    [31] YUE Y F, TANG L C, YU K F, et al. Coral reef records of sea-level highstand and climate events in northern South China Sea during the Mid-Holocene [J]. Unpublished.

    Google Scholar

    [32] 张乔民,隋淑珍. 中国红树林湿地资源及其保护[J]. 自然资源学报,2001,16(1):28-36.

    Google Scholar

    [33] 曾丽丽,施平,王东晓,等. 南海蒸发和净淡水通量的季节和年际变化[J]. 地球物理学报,2009,52(4):929-938.

    Google Scholar

    [34] WANG Y J,CHENG H,Edwards R L. The Holocene Asian monsoon:links to solar changes and North Atlantic climate[J]. Science,2007,308(5723):854-857.

    Google Scholar

    [35] 刘秦玉,李薇,徐启春. 东北季风与南海海洋环流的相互作用[J]. 海洋与湖沼,1997,28(5):493-502.

    Google Scholar

    [36] XIAN L Z,FAN Q Y,ZENG G,et al. The variation of the low-level cross-equatorial flow over the South China Sea and its association with the East Asian summer monsoon in midsummer[J]. Journal of Tropical Meteorology,2018,34(3):339-346.

    Google Scholar

    [37] YUE Y F,YU K F,TAO S C,et al. 3500-year western Pacific storm record warns of additional storm activity in a warming warm pool[J]. Palaeogeography,2019,521:57-71. doi: 10.1016/j.palaeo.2019.02.009

    CrossRef Google Scholar

    [38] 杨庆轩,梁鑫峰,田纪伟,等. 南海北部海流观测结果及其谱分析[J]. 海洋与湖沼,2008,39(6):561-568.

    Google Scholar

    [39] QI H E,WEI Z,WANG Y. Study on the sea currents in the northern shelf and slope of the South China Sea based on the observation[J]. Acta Oceanologica Sinica,2012,34(1):17-28.

    Google Scholar

    [40] 郭忠信,杨天鸿,仇德忠. 冬季南海暖流及其右侧的西南向海流[J]. 热带海洋学报,1985,1(1):3-11.

    Google Scholar

    [41] 毕福志,袁义申,尹云鹏. 广东海山岛晚全新世"海滩岩田"的沉积相及其海岸升降特征的研究[J]. 海洋地质与第四纪地质,1987,2(2):47-59.

    Google Scholar

    [42] 毕福志,袁又申. 山东乳山海滩岩及其重要科学意义[J]. 现代地质,1991,1(2):85-91.

    Google Scholar

    [43] 张明书. 关于海滩岩几个问题的初步研究[J]. 海洋地质与第四纪地质,1985,1(2):107-114.

    Google Scholar

    [44] 王国忠. 南海珊瑚礁区沉积学 [M]. 北京: 海洋出版社, 2001: 1-336.

    Google Scholar

    [45] 王雪木,陈万利,薛玉龙,等. 西沙群岛宣德环礁晚第四纪灰砂岛沉积地层[J]. 海洋地质与第四纪地质,2018,38(6):37-45.

    Google Scholar

    [46] 孙志鹏,许红,王振峰,等. 西沙群岛海滩岩类型及其油气地质意义[J]. 海洋地质动态,2010,26(7):1-6.

    Google Scholar

    [47] YU K F,HUA Q,ZHAO J X,et al. Holocene marine C-14 reservoir age variability:evidence from Th-230-dated corals in the South China Sea[J]. Paleoceanography,2010,25(2):25-40.

    Google Scholar

    [48] FANG X Q,HOU G L. Synthetically reconstructed Holocene temperature change in China[J]. Scientia Geographica Sinica,2011,31(4):385-393.

    Google Scholar

    [49] STOULOS S,SAMARTZIDOU E,MANIATIS Y,et al. U-series geochronology using the spectrometry method cooperated with C-14 dating results[J]. Journal of Radioanalytical and Nuclear Chemistry,2018,318(3):1837-1843. doi: 10.1007/s10967-018-6054-3

    CrossRef Google Scholar

    [50] 刘文会,余克服,王瑞,等. 涠洲岛北港海滩岩的铀系年代及其海平面指示意义[J]. 第四纪研究,2020,40(3):764-774.

    Google Scholar

    [51] YAN T L, YU K F, WANG R,et al. Records of sea-level highstand over the Meghalayan age/late Holocene from uranium-series ages of beachrock in Weizhou Island,northern South China Sea[J]. Holocene,2021,11/12(31):1745-1760.

    Google Scholar

    [52] 梁文,黎广钊. 涠洲岛珊瑚礁分布特征与环境保护的初步研究[J]. 环境科学研究,2002,15(6):5-17.

    Google Scholar

    [53] 杨红强,余克服. 微环礁的高分辨率海平面指示意义[J]. 第四纪研究,2015,35(2):354-362.

    Google Scholar

    [54] 时小军,余克服,陈特固,等. 中—晚全新世高海平面的琼海珊瑚礁记录[J]. 海洋地质与第四纪地质,2008,28(5):1-9.

    Google Scholar

    [55] 聂宝符,陈特固. 雷州半岛珊瑚礁与全新世高海面[J]. 科学通报,1997,42(5):511-514.

    Google Scholar

    [56] ENGELHART S E,HORTON B P,KEMP A C. Holocene sea-level changes along the United States' Atlantic Coast[J]. Oceanography,2011,24(2):70-79. doi: 10.5670/oceanog.2011.28

    CrossRef Google Scholar

    [57] FRANCA A. Encyclopedia of modern coral reefs:structure,form and process[J]. Reference reviews,2011,25(8):39-40. doi: 10.1108/09504121111184480

    CrossRef Google Scholar

    [58] SHENNAN I,PELTIER W R,DRUMMOND R,et al. Global to local scale parameters determining relative sea-level changes and the post-glacial isostatic adjustment of Great Britain[J]. Quaternary Science Reviews,2002,21(1-3):397-408. doi: 10.1016/S0277-3791(01)00091-9

    CrossRef Google Scholar

    [59] 毕福志,林耀光. 中国全新世海平面变化周期与世界未来海平面变化规律[J]. 第四纪研究,1991,11(1):43-54,99-100.

    Google Scholar

    [60] 孙桂华,朱本铎. 南海及其周缘地区全新世海平面遗迹的构造含义[J]. 海洋学报,2009,31(5):58-68.

    Google Scholar

    [61] 王为. 香港贝澳湾全新世海滩岩的发现及意义[J]. 科学通报,1993,38(3):258-260.

    Google Scholar

    [62] 徐笑梅,高抒,周亮,等. 海南岛东北部海岸极端波浪事件沉积记录[J]. 海洋学报,2019,41(6):52-67.

    Google Scholar

    [63] 詹文欢,刘以宣. 从广东沿海海滩岩探讨历史时期海平面变化[J]. 南海研究与开发,1996,1(4):30-25.

    Google Scholar

    [64] 张崧,孙现领,王为,等. 广东深圳大鹏半岛海岸地貌特征[J]. 热带地理,2013,33(6):647-658.

    Google Scholar

    [65] 张仲英,刘瑞华. 海南岛沿海的全新世[J]. 地理科学,1987,2:129-138,197.

    Google Scholar

    [66] 宗永强,李平日. 粤东全新世海滩岩形成条件初步分析[J]. 热带地理,1984,4:15-22.

    Google Scholar

    [67] 王建华. 华南沿海全新世海滩岩的特征及其意义[J]. 中山大学学报论丛,1992,1(1):111-122.

    Google Scholar

    [68] SHEN J W, LONG J P, PEDOJA K,et al. Holocene coquina beachrock from Haishan Island,east coast of Guangdong Province,China[J]. Quaternary International,2013,310(15):199-212.

    Google Scholar

    [69] STUIVIER M, REIMER P J. CALIB rev. 8. Radiocarbon, 1993, 35, 215-230.

    Google Scholar

    [70] HEATON T J,KHLER P,BUTZIN M,et al. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP)[J]. Radiocarbon,2020,62(4):779-820. doi: 10.1017/RDC.2020.68

    CrossRef Google Scholar

    [71] YAO Y T, ZHAN W H, SUN J L,et al. Emerged fossil corals on the coast of northwestern Hainan Island,China:implications for mid-Holocene sea level change and tectonic uplift[J]. Chinese Science Bulletin,2013,58(23):2869-2876. doi: 10.1007/s11434-013-5692-7

    CrossRef Google Scholar

    [72] ZONG Y Q, YIM W S, YU F, et al. Late Quaternary environmental changes in the Pearl River Mouth region,China[J]. Quaternary International,2009,206(1/2):35-45.

    Google Scholar

    [73] ZONG Y Q,INNES J B,WANG Z,et al. Mid-Holocene coastal hydrology and salinity changes in the east Taihu area of the lower Yangtze wetlands,China[J]. Quaternary Research,2011,76(1):69-82. doi: 10.1016/j.yqres.2011.03.005

    CrossRef Google Scholar

    [74] CHEN J H, EDWARDS R L, WASSERBURG G J. 238U,234U and 232Th in seawater[J]. Earth Planetary Science Letters,1986,80(3/4):241-251.

    Google Scholar

    [75] STIRLING C H,ESAT T M,MCCULLOCH M T,et al. High-precision U-series dating of corals from Western Australia and implications for the timing and duration of the Last Interglacial[J]. Earth Planetary Science Letters,1995,135(1/4):115-130.

    Google Scholar

    [76] 朱照宇,邱燕,周厚云,等. 南海全球变化研究进展[J]. 地质力学学报,2002,8(4):315-322,324.

    Google Scholar

    [77] CHEN Y G, LIU T K. Sea Level Changes in the last several thousand years,Penghu Islands,Taiwan Strait[J]. Quaternary Research,1996,45(3):254-262. doi: 10.1006/qres.1996.0026

    CrossRef Google Scholar

    [78] BAKER J L,LACHNIET M S,CHERVYATSOVA O,et al. Holocene warming in western continental Eurasia driven by glacial retreat and greenhouse forcing[J]. Nature Geoscience,2017,10(6):430-435. doi: 10.1038/ngeo2953

    CrossRef Google Scholar

    [79] XIONG H X,ZONG Y Q, HUANG G Q,et al. Sedimentary responses to Holocene sea-level change in a shallow marine environment of southern China[J]. Journal of Asian Earth Sciences,2018,166(10):95-106.

    Google Scholar

    [80] XIONG H X,ZONG Y Q,LI T,et al. Coastal GIA processes revealed by the early to middle Holocene sea-level history of East China[J]. Quaternary Science Reviews,2020,233(1):106249.

    Google Scholar

    [81] 陈俊仁,陈欣树. 全新世海南省鹿回头海平面变化之研究[J]. 南海地质研究,1991,3:77-86.

    Google Scholar

    [82] BAKER R G V,HAWORTH R J. Smooth or oscillating late Holocene sea-level curve? Evidence from cross-regional statistical regressions of fixed biological indicators[J]. Marine Geology,2000,163(1):353-365.

    Google Scholar

    [83] 刘嘉麒,倪云燕,储国强. 第四纪的主要气候事件[J]. 第四纪研究,2001,21(3):239-248.

    Google Scholar

    [84] RAJSHEKHAR C,REDDY P P. Late Quaternary beach rock formations of Andaman-Nicobar Islands,Bay of Bengal[J]. Journal of the Geological Society of India,2003,62(5):595-604.

    Google Scholar

    [85] CALDAS L,STATTEGGER K,VITAL H. Holocene sea-level history:evidence from coastal sediments of the northern Rio Grande do Norte coast,NE Brazil[J]. Marine Geology,2006,228(1/4):39-53.

    Google Scholar

    [86] BLAAUM M. Methods and code for "classical" age-modeling of radiocarbon sequences[J]. Quaternary Geochronology,2010,5(5):512-518. doi: 10.1016/j.quageo.2010.01.002

    CrossRef Google Scholar

    [87] CRAIG H. Carbon 13 in Plants and the relationships between carbon 13 and carbon 14 variations in nature[J]. Journal of Geology,1954,62(2):115-149. doi: 10.1086/626141

    CrossRef Google Scholar

    [88] MARTIN C W. Radiocarbon dating:recent applications and future potential[J]. Geoarchaeology-an International Journal,2010,14(4):371-373.

    Google Scholar

    [89] HALL B L,HENDERSON G M. Use of uranium-thorium dating to determine past 14C reservoir effects in lakes:examples from Antarctica[J]. Earth and Planetary Science Letters,2001,193(3/4):565-577.

    Google Scholar

    [90] 姜帆,刘俊文,黄志炯,等. 黑碳气溶胶的稳定和放射性碳同位素研究进展[J]. 科学通报,2020,65(35):109-120.

    Google Scholar

    [91] BLAAUW M, CHRISTEN J A. Flexible paleoclimate age-depth models using an autoregressive gamma process[J]. Bayesian Analysis,2011,6(3):657-674.

    Google Scholar

    [92] 刘志杰,余佳,孙晓燕,等. 海洋沉积物14C测年数据整合与校正问题探讨[J]. 第四纪研究,2016,36(2):492-502.

    Google Scholar

    [93] 余克服,赵建新,施祺,等. 永暑礁西南礁镯生物地貌与沉积环境[J]. 海洋地质与第四纪地质,2003,23(4):1-7.

    Google Scholar

    [94] 陈以健,POLACH H. 沉积物中碳酸盐14C年龄的可靠性[J]. 海洋地质与第四纪地质,1987,2:133-141.

    Google Scholar

    [95] 邓文峰,韦刚健,李献华. 有孔虫的高精度Mg/Ca比值的ICP-AES分析[J]. 海洋地质与第四纪地质,2005,25(2):147-151.

    Google Scholar

    [96] 樊耘畅,丁旋,樊加恩,等. 东海陆架浙闽沿岸泥质区不同属种底栖有孔虫对14C测年的影响及其原因初探[J]. 第四纪研究,2018,38(3):792-798.

    Google Scholar

    [97] 李建芬,苏盛伟,商志文,等. 渤海湾巨葛庄贝壳堤与下伏泥层有孔虫组合的海面变化意义[J]. 地质通报,2016,35(10):1584-1589.

    Google Scholar

    [98] STIRLING C H,ANDERSEN M B. Uranium-series dating of fossil coral reefs:extending the sea-level record beyond the Last Glacial cycle[J]. Earth Planetary Science Letters,2009,284(3/4):269-283.

    Google Scholar

    [99] ZHAO J X ,YU K F ,FENG Y X. High-precision 238U-234U-230Th disequilibrium dating of the recent past:a review[J]. Quaternary Geochronology,2009,4(5):423-433. doi: 10.1016/j.quageo.2009.01.012

    CrossRef Google Scholar

    [100] BARD E,ARNOLD M,FAIRBANKS R G,et al. 230Th-234U and 14C ages obtained by mass spectrometry on corals[J]. Radiocarbon,1993,35:191-199. doi: 10.1017/S0033822200013886

    CrossRef Google Scholar

    [101] EISENHAUER A,WASSERBURG G J,CHEN J H,et al. Holocene sea-level determination relative to the Australian continent:U/Th (TIMS) and 14C (AMS) dating of coral cores from the Abrolhos Islands[J]. Earth and Planetary Science Letters,1993,114:529-547. doi: 10.1016/0012-821X(93)90081-J

    CrossRef Google Scholar

    [102] INGRAM B L,SOUTHON J R. Reservoir ages in eastern Pacific coastal and estuarine waters[J]. Radiocarbon,1996,38:573-582. doi: 10.1017/S0033822200030101

    CrossRef Google Scholar

    [103] HUA Q,ULW S,Yu K F,et al. Temporal variability in the Holocene marine radiocarbon reservoir effect for the Tropical and South Pacific[J]. Quaternary Science Reviews,2020,249:106613. doi: 10.1016/j.quascirev.2020.106613

    CrossRef Google Scholar

    [104] ZHAO J X, YU K F. Timing of Holocene sea-level highstands by mass spectrometric U-series ages of a coral reef from Leizhou Peninsula,South China Sea[J]. Chinese Science Bulletin,2002,47(4):348-352.

    Google Scholar

    [105] 张培震,王琪,马宗晋. 中国大陆现今构造运动的GPS速度场与活动地块[J]. 地学前缘,2022,9(2):12.

    Google Scholar

    [106] ZHANG P,XIA H,XIA L. Thermal Ionization Mass Spec trometry (TIMS)-U-Series ages of corals from the South China Sea and Holocene high sea level[J]. Chinese Journal of Geochemisty,2003,22(2):133-139. doi: 10.1007/BF02831522

    CrossRef Google Scholar

    [107] MA Z B,XIAO J,ZHAO X T,et al. Precise U-series dating of coral reefs from the South China Sea and the high sea level during the Holocene[J]. Journal of Coastal Research,2003,19(2):296-303.

    Google Scholar

    [108] HO K S, CHEN J C, JUANG W. Geochronology and geochemistry of late Cenozoic basalts from the Leiqiong area,southern China[J]. Journal of Asian Earth Sciences,2000,18(3):307-324. doi: 10.1016/S1367-9120(99)00059-0

    CrossRef Google Scholar

    [109] LU R. Study on the modern crustal vertical movement in Guangdong coast[J]. South China Journal of Seismology,1997,17(1):25-33.

    Google Scholar

    [110] 滕建彬,沈建伟,PEDOJA K. 深圳西冲湾的海蚀地貌与海滩沉积研究[J]. 现代地质,2007,21(3):511-517.

    Google Scholar

    [111] YU K F,LIU D S. High-frequency climatic oscillations recorded in a Holocene coral reef at Leizhou Peninsula,South China Sea[J]. Science in China Series D:Earth Sciences,2002,45(12):1057-1067. doi: 10.1360/02yd9103

    CrossRef Google Scholar

    [112] 詹文欢,朱照宇,姚衍桃,等. 南海西北部珊瑚礁记录所反映的新构造运动[J]. 第四纪研究,2006,26(1):77-84.

    Google Scholar

    [113] GISCHLER E,LOMANDO A J. Holocene cemented beach deposits in Belize[J]. Sedimentary Geology,1997,110(3):277-297.

    Google Scholar

    [114] KINDLER P,BAIN R J. Submerged upper Holocene beachrock on San Salvador Island,Bahamas:implications for recent sea-level history[J]. Geologische Rundschau,1993,82(2):241-247.

    Google Scholar

    [115] BOEYINGA J,DUSSELJEE D W,POOL A D G. The effect of beach rock formation on the morphological evolution of a beach. the case study of an eastern Mediterranean Beach:Ammoudara,Greece[J]. Journal of Coastal Research,2013,69(1):65-69.

    Google Scholar

    [116] 何耀堂. 福建泉州湾全新世海滩岩特征及物源环境分析[J]. 福建地质,2014,33(2):112-118.

    Google Scholar

    [117] 马克俭,冯应俊. 浙江沿海全新世海滩岩的沉积相及其意义[J]. 地震地质,1993,15(3):269-276.

    Google Scholar

    [118] 孙奕映,WU P,黄光庆,等. 广东全新世海平面重建与冰川均衡调整模型结果的比较[J]. 第四纪研究,2015,35(2):281-290.

    Google Scholar

    [119] 聂宝符,陈特固. 雷州半岛珊瑚礁与全新世高海面[J]. 科学通报,1997,42(5):1-7.

    Google Scholar

    [120] ZHANG Y,ZONG Y,XIONG H,et al. The middle-to-late Holocene relative sea-level history,highstand and levering effect on the east coast of Malay Peninsula[J]. Global and Planetary Change 2021,196,1033:69.

    Google Scholar

    [121] LAMBECK K,ROUBY H,PURCELL A,et al. Inaugural article by a recently elected academy member:sea level and global ice volumes from the Last Glacial Maximum to the Holocene[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(43):211-216.

    Google Scholar

    [122] 汪汉胜,贾路路,PATRICK W,等. 末次冰期冰盖消融对东亚历史相对海平面的影响及意义[J]. 地球物理学报,2012,55(4):1144-1153.

    Google Scholar

    [123] BRADLEY S L,MILNE G A,TEFERLE F N,et al. Glacial isostatic adjustment of the British Isles:new constraints from GPS measurements of crustal motion[J]. Geophysical Journal International,2009,178:14-22. doi: 10.1111/j.1365-246X.2008.04033.x

    CrossRef Google Scholar

    [124] BRADLEY S L,MILNE G A,SHENNAN I,et al. An improved glacial isostatic adjustment model for the British Isles[J]. Journal of Quaternary Science,2011,26(5):541-552. doi: 10.1002/jqs.1481

    CrossRef Google Scholar

    [125] PELTIER W R. Global glacial isostasy and the surface of the ice-age earth:the ice-5g (vm2) model and grace[J]. Annual Review of Earth Planetary Sciences,2004,20(32):111-149.

    Google Scholar

    [126] TURCOTTE D L,BURKE K. Global sea-level changes and the thermal structure of the earth[J]. Earth Planetary Science Letters,1978,41(3):341-346. doi: 10.1016/0012-821X(78)90188-7

    CrossRef Google Scholar

    [127] 杨学祥. 地壳均衡与海平面变化[J]. 地球科学进展,1992,7(5):22-30.

    Google Scholar

    [128] WANG L. East Asian monsoon climate during the Late Pleistocene:high-resolution sediment records from the South China Sea[J]. Marine Geology,1999,156(1/4):245-284.

    Google Scholar

    [129] PELTIER W R,WU P,YUEN D. The Viscosities of the Earth's Mantle[J]. American Geophysical Union,2013,4:1-16.

    Google Scholar

    [130] ZONG Y,YANG Z,XIONG H,et al. The middle-to-late Holocene relative sea-level history,highstand and levering effect on the east coast of Malay Peninsula[J]. Global Planetary Change,2020,196:103369.

    Google Scholar

    [131] 时小军,余克服,陈特固. 南海周边中全新世以来的海平面变化研究进展[J]. 海洋地质与第四纪地质,2007,27(5):121-132.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(4)

Article Metrics

Article views(2128) PDF downloads(269) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint