2023 Vol. 39, No. 3
Article Contents

LI Zhitong, DONG Lingyu, LU Kai, SHAN Rui, ZHOU Jixiang. Research on underwater control technology of deep-sea towing system[J]. Marine Geology Frontiers, 2023, 39(3): 30-39. doi: 10.16028/j.1009-2722.2022.037
Citation: LI Zhitong, DONG Lingyu, LU Kai, SHAN Rui, ZHOU Jixiang. Research on underwater control technology of deep-sea towing system[J]. Marine Geology Frontiers, 2023, 39(3): 30-39. doi: 10.16028/j.1009-2722.2022.037

Research on underwater control technology of deep-sea towing system

  • The deep-sea towing system is an important mean for mankind to develop and utilize the ocean. Among many types of deep-sea detection equipment, the deep-sea towing system has been widely used due to its advantages such as wide detection area, high operation efficiency, and good control performance. Aiming at the underwater control technology of deep-sea towing system, its development history and research status at home and abroad in two aspects: control means and control strategy were summarized and the advantages and disadvantages of different control means were analyzed and compared, and in the future research direction on the underwater control technology of deep-sea towing system was prospected, which will provide references for the application and development of deep-sea towing system.

  • 加载中
  • [1] 丁忠军,任玉刚,张奕,等. 深海探测技术研发和展望[J]. 海洋开发与管理,2019,36(4):71-77. doi: 10.3969/j.issn.1005-9857.2019.04.016

    CrossRef Google Scholar

    [2] 陈鹰. 海洋观测方法之研究[J]. 海洋学报,2019,41(10):182-188.

    Google Scholar

    [3] 朱心科,金翔龙,陶春辉,等. 海洋探测技术与装备发展探讨[J]. 机器人,2013,35(3):376-384.

    Google Scholar

    [4] BEASLEY B, BEST C, DAVIS D. Design of flying eye remotely operated vehicle for deep water surveillance[J]. Ocean Conference Record (IEEE), 2000: 2075-2099.

    Google Scholar

    [5] 罗进华,朱友生,张宝平,等. 深拖系统在南海深水工程勘察中的应用[J]. 物探装备,2013,23(6):393-396.

    Google Scholar

    [6] 单瑞,董凌宇,杜凯,等. 超短基线定位系统在深拖探测中的应用[J]. 海洋地质前沿,2019,35(9):29-35. doi: 10.16028/j.1009-2722.2019.09006

    CrossRef Google Scholar

    [7] 徐建,郑玉龙,包更生,等. 基于声学深拖调查的海山微地形地貌研究:以马尔库斯-威克海岭一带的海山为例[J]. 海洋学研究,2011,29(1):17-24. doi: 10.3969/j.issn.1001-909X.2011.01.003

    CrossRef Google Scholar

    [8] 冯强强,温明明,牟泽霖,等. 声学深拖系统在海底冷泉调查中的应用[J]. 测绘工程,2018,27(8):49-52,59. doi: 10.19349/j.cnki.issn1006-7949.2018.08.009

    CrossRef Google Scholar

    [9] ALAN L,GRAEME S,BLAIR H,et al. Multi-dimensional water quality assessment of an urban drinking water source elucidated by high resolution underwater towed vehicle mapping[J]. Water Research,2016,93:289-295. doi: 10.1016/j.watres.2016.01.059

    CrossRef Google Scholar

    [10] CHOU Y C,WANG C C,CHEN H H,et al. Seafloor characterization in the southernmost Okinawa Trough from underwater optical imagery[J]. Terrestrial,Atmospheric and Oceanic Sciences,2019,30(5):717-737. doi: 10.3319/TAO.2019.03.14.01

    CrossRef Google Scholar

    [11] 刘晓东,赵铁虎,曹金亮,等. 用于天然气水合物调查的轻便型声学深拖系统总体方案分析[J]. 海洋地质前沿,2015,31(6):8-16. doi: 10.16028/j.1009-2722.2015.06002

    CrossRef Google Scholar

    [12] 王飞. 海洋勘探拖曳系统运动仿真与控制技术研究[D]. 上海: 上海交通大学, 2006.

    Google Scholar

    [13] VU H X, DAVEY S J, FLETCHER F K, et al. Track-before-detect for an active towed array sonar[C]//Proceedings of Acoustics 2013. Victor Harbor, Australia: Australian Acoustical Society, 2013: 1-7.

    Google Scholar

    [14] 金晓东. 水下拖曳系统水动力性能分析[D]. 广州: 华南理工大学, 2014.

    Google Scholar

    [15] NGUYEN T D, EGELAND O. Stabilization of towed cables[C]//Proceedings of the 43rd IEEE Conference on Decision and Control. Nassau: IEEE, 2004: 5059-5064.

    Google Scholar

    [16] ZHANG H T, GU H T, LIN Y, et al. Design and hydrodynamic analysis of towing device of the automated recovery of the AUV by the USV[C]//Proceedings of the IEEE International Conference on Information and Automation. Wuyi Mountain, China: IEEE, 2018: 416-421.

    Google Scholar

    [17] PEDERSEN E, SORENSEN A J. Modelling and control of towed marine seismic streamer cables[J]. IFAC Proceedings Volumes, 2001, 34( 7), 89-94.

    Google Scholar

    [18] 裴轶群. 深海拖曳系统运动性能分析与定高控制研究[D]. 上海: 上海交通大学, 2011.

    Google Scholar

    [19] 马伟,师子锋. 收放拖缆对拖体深度影响的仿真分析[J]. 水雷战与舰船防护,2012,20(3):67-69.

    Google Scholar

    [20] 李世振,魏建华,胡波,等. 主动式水下拖曳升沉补偿系统的非线性控制[J]. 中南大学学报(自然科学版),2018,49(3):612-617. doi: 10.11817/j.issn.1672-7207.2018.03.014

    CrossRef Google Scholar

    [21] 王海波,王庆丰. 水下拖曳升沉补偿系统设计及其内模鲁棒控制[J]. 机械工程学报,2010,46(8):128-132.

    Google Scholar

    [22] 王福贵,张强,梁顺安. 1000 hp主动钻井升沉补偿绞车的研制[J]. 机械工程师,2018(11):115-117,121. doi: 10.3969/j.issn.1002-2333.2018.11.038

    CrossRef Google Scholar

    [23] 王威,徐华源,孙波,等. 高分辨率多道地震勘探技术在南海天然气水合物调查中的应用[J]. 海洋地质前沿,2019,35(9):19-24. doi: 10.16028/j.1009-2722.2019.09004

    CrossRef Google Scholar

    [24] WINGHAM P J. Comparative steady state deep towing performance of bare and faired cable systems[J]. Ocean Engineering,1983,10(1):1-32. doi: 10.1016/0029-8018(83)90037-9

    CrossRef Google Scholar

    [25] 易杏甫,王岩峰,王成,等. 海洋监测拖曳系统中拖缆导流套设计[J]. 海洋工程,2005,23(4):120-124. doi: 10.16483/j.issn.1005-9865.2005.04.019

    CrossRef Google Scholar

    [26] 刘天威, 黄国梁. 拖缆导流套顺流性能及流体动力测试报告[R]. 上海: 上海交通大学, 1992.

    Google Scholar

    [27] 苑志江,金良安,田恒斗,等. 海洋拖曳系统的水动力理论与控制技术研究综述[J]. 科学技术与工程,2013,13(2):408-415,420. doi: 10.3969/j.issn.1671-1815.2013.02.029

    CrossRef Google Scholar

    [28] LI B B,HUANG W,LIANG H. An efficient method to assess effect of fin on the course stability of towing system[J]. Ocean Engineering,2020,217:108005. doi: 10.1016/j.oceaneng.2020.108005

    CrossRef Google Scholar

    [29] 褚宏宪,梅赛,史慧杰,等. 海洋短排列高分辨率地震拖缆沉放深度测试分析[J]. 海洋地质前沿,2020,36(12):65-71. doi: 10.16028/j.1009-2722.2020.003

    CrossRef Google Scholar

    [30] FORNARI,DANIEL J. A new deep-sea towed digital camera and multi-rock coring system[J]. EOS,Transactions American Geophysical Union,2003,84(8):69-76. doi: 10.1029/2003EO080001

    CrossRef Google Scholar

    [31] COLEMAN D F, NEWMAN J B, BALLARD R D. Design and implementation of advanced underwater imaging systems for deep sea marine archaeological surveys[C]//Proceedings of the OCEANS 2000 MTS/IEEE Conference and Exhibition. Providence: IEEE, 2000.

    Google Scholar

    [32] BALLARD R D, YOERGER D R, STEWART W K, et al. Argo/Jason a remotely operated survey and sampling system for full-ocean depth[C]//Proceedings of the OCEANS 91 Proceedings. Honololu: IEEE, 1991.

    Google Scholar

    [33] OTSUKA K, MOMMA H S, IIOTTA H. Jamstec/deeptow camera system[R]. Japan Marine Science and Technology Center, 1991.

    Google Scholar

    [34] ZHU J M. Deep ocean research activity in China[C]//Proceedings of the Eleventh International Offshore and Polar Engineering Conference. Stavanger, Norway: ISOPE, 2001.

    Google Scholar

    [35] 葛彤, 朱继懋. 6000米深海光学深拖系统升级改造课题研究报告[R]. 上海: 上海交通大学, 2009.

    Google Scholar

    [36] 苑志江,金良安,迟卫,等. 双三角翼型拖曳体定深特性的水动力实验研究[J]. 中国测试,2013,39(3):108-112.

    Google Scholar

    [37] 高国章,张家赫. 基于ADRC参数优化的拖曳式水下航行器定深控制分析[J]. 大连海事大学学报,2020,46(2):17-25. doi: 10.16411/j.cnki.issn1006-7736.2020.02.003

    CrossRef Google Scholar

    [38] ABBOTT I H, VON DOENHOFF A E. Theory of wing sections[R]. New York: Dover Publications, 1959.

    Google Scholar

    [39] GWYN G, POLLARD R. Modern tools for upper ocean surveys[J]. Journal of Naval Science. 1993, 18(1): 66-80.

    Google Scholar

    [40] SCHUCH E M, LINKLATER A C, LAMBETH N W, et al. Design and simulation of a two stage towing system[C]// Oceans. IEEE, 2005.

    Google Scholar

    [41] NAKAMULA M,KAJIWARA H,KOTERAYAMA W. Development of an ROV operated both as towed and self-propulseve vehicle[J]. Ocean Engineering,2001,28:1-43. doi: 10.1016/S0029-8018(99)00058-X

    CrossRef Google Scholar

    [42] WOOLSEY C A, GARGETT A E. Passive and active attitude stabilization for a tow-fish[C]//Proceedings of the 41st IEEE Conference on Decision and Control. Las Vegas: IEEE, 2002.

    Google Scholar

    [43] DESSUREAULT J G. "Batfish" A depth controllable towed body for collecting oceanographic data[J]. Ocean Engineering, 1976, 3(2): 99-100, IN5-IN6, 101-111.

    Google Scholar

    [44] YAMAGUCHI S, KOTERAYAMA W, YOKOBIKI T. Development of a motion control method for a towed vehicle with a long cable[C]//Proceedings of the 2000 International Symposium on Underwater Technology. Tokyo: IEEE, 2000: 491-496.

    Google Scholar

    [45] YAMAGUCHI S, KOTERAYAMA W, YOKOBIKI T. Effects of unsteady lift and cable tension on design of a control system of a towed vehicle[C]//Proceedings of the 11th International Offshore and Polar Engineering Conference. Stavanger, Norway, 2001: 339-345

    Google Scholar

    [46] 杨晓帆, 周凯. 拖曳式剖面探测拖体系统构成及运动控制试验[J]. 海洋工程, 2009, 27(3): 122~126.

    Google Scholar

    [47] 金晓东,吴家鸣. 多自由度控制水下拖曳体水动力响应分析[J]. 广东造船,2013,32(5):61-65. doi: 10.3969/j.issn.2095-6622.2013.05.038

    CrossRef Google Scholar

    [48] 孙烨,司先才,裴建新,等. 一种水下拖曳体的运动特性模拟研究[J]. 船舶工程,2018,40(增刊1):336-340. doi: 10.13788/j.cnki.cbgc.2018.S1.330

    CrossRef Google Scholar

    [49] TORE J,BERNT J. Numerical and experimental studies of submerged towing of a subsea template[J]. Ocean Engineering,2012,42:147-154. doi: 10.1016/j.oceaneng.2012.01.003

    CrossRef Google Scholar

    [50] 刘启帮. 水下高速拖体流体动力性能研究[D]. 北京: 中国舰船研究院, 2016.

    Google Scholar

    [51] WU J,CHWANG A T. Experimental Investigation on a Two-part Underwater Towed System[J]. Ocean Engineering,2001,28(6):735-750. doi: 10.1016/S0029-8018(00)00030-5

    CrossRef Google Scholar

    [52] GROSENBAUGH M A. Transient behavior of towed cable systems during ship turning maneuvers[J]. Ocean Engineering,2007,34(11):1532-1542.

    Google Scholar

    [53] 庞师坤,刘旌扬,王健,等. 二级深拖系统的回转运动特性[J]. 船舶工程,2017,39(9):71-77. doi: 10.13788/j.cnki.cbgc.2017.09.071

    CrossRef Google Scholar

    [54] 冯苏, 朱克强. 水下拖曳系统运动姿态仿真研究[J]. 海洋工程, 2005, 11(4): 56-63.

    Google Scholar

    [55] 庞师坤,刘旌扬,王健,等. 深海拖曳系统自稳定二级拖体姿态控制研究[J]. 船舶工程,2018,40(3):62-67. doi: 10.13788/j.cnki.cbgc.2018.03.062

    CrossRef Google Scholar

    [56] 郭军,冯强强,温明明,等. Teledyne Benthos TTV-301声学深拖系统在海底微地形地貌调查中的应用[J]. 测绘工程,2018,27(10):46-51.

    Google Scholar

    [57] 单晨晨,温明明,刘斌,等. 基于合成孔径声学深拖调查的海底浅表层流体活动研究:以SAMS DT6000深拖在琼东南海域调查为例[J]. 地球物理学报,2020,63(12):4451-4462. doi: 10.6038/cjg2020O0173

    CrossRef Google Scholar

    [58] 曹金亮,刘晓东,张方生,等. DTA-6000声学深拖系统在富钴结壳探测中的应用[J]. 海洋地质与第四纪地质,2016,36(4):173-181. doi: 10.16562/j.cnki.0256-1492.2016.04.020

    CrossRef Google Scholar

    [59] 中船. 青岛成功研发3000m级声学深拖系统[J]. 军民两用技术与产品,2016(1):30. doi: 10.19385/j.cnki.1009-8119.2016.01.045

    CrossRef Google Scholar

    [60] ABLOW C M,SCHECHTE R S. Numerical simulation of undersea cable dynamics[J]. Ocean Engineering,1983,10(6):443-457. doi: 10.1016/0029-8018(83)90046-X

    CrossRef Google Scholar

    [61] 郑荣,辛传龙,汤钟,等. 无人水面艇自主部署自主水下机器人平台技术综述[J]. 兵工学报,2020,41(8):1675-1687. doi: 10.3969/j.issn.1000-1093.2020.08.022

    CrossRef Google Scholar

    [62] 李英辉,李喜斌,戴杰,等. 拖曳系统计算中拖缆与拖体的耦合计算[J]. 海洋工程,2002,20(4):37-42. doi: 10.3969/j.issn.1005-9865.2002.04.007

    CrossRef Google Scholar

    [63] da SILVA GOMES S,PINHEIRO GOMES S C. A new dynamic model of towing cables[J]. Ocean Engineering,2021,220:107653. doi: 10.1016/j.oceaneng.2020.107653

    CrossRef Google Scholar

    [64] CHAPMAN D A. The adjustment of fin size to minimize the ship induced pitching motion of a towed fish[J]. Ocean Engineering,1984,11:23-64. doi: 10.1016/0029-8018(84)90022-2

    CrossRef Google Scholar

    [65] GERLER M, HARGEN G L. Standard equations of motions for submarine simulation[R]. Washington: Technical Report DTMB 2510 David Taylor Research Center, 1967.

    Google Scholar

    [66] ABKOWITZ M A. Stability and motion control of ocean vehicles[M]. MA: MIT Press, 1969: 32-50.

    Google Scholar

    [67] SUN H B,CHEN G Q,LIN W J. A hydrodynamic model of bridle towed system[J]. Journal of Marine Science and Technology,2019,24(1):200-207. doi: 10.1007/s00773-018-0546-2

    CrossRef Google Scholar

    [68] 苑志江,金良安,迟卫,等. 海洋拖曳系统的船/缆/体耦合模型研究[J]. 船舶力学,2016,20(10):1252-1261. doi: 10.3969/j.issn.1007-7294.2016.10.005

    CrossRef Google Scholar

    [69] BUCKHAM B,NAHON M,SETO M,et al. Dynamics and control of a towed underwater vehicle system,part I model development[J]. Ocean Engineering,2003,30(4):453-470. doi: 10.1016/S0029-8018(02)00029-X

    CrossRef Google Scholar

    [70] WATARU K, SATORU Y, TAKASHI Y, et al. Space-continuous measurements on ocean current and chemical properties with the intelligent towed vehicle“Flying Fish”[J]. IEEE Journal of Oceanic Engineering. 2000, 25(1): 130-138.

    Google Scholar

    [71] 卢祎斌,高占胜,金良安,等. 拖曳系统的水翼控制运动模型及仿真[J]. 指挥控制与仿真,2012,34(6):89-95.

    Google Scholar

    [72] 郑智林,苑志江,金良安,等. 舰船机动中拖曳系统建模与定深控制研究[J]. 兵器装备工程学报,2016,37(4):106-110. doi: 10.11809/scbgxb2016.04.026

    CrossRef Google Scholar

    [73] KATO N. Underwater towed vehicle maneuverable in both vertical and horizontal axis[J]. Journal of the Society of Naval Architects of Japan,1991(169):111-122.

    Google Scholar

    [74] KATO N. Guidance and control of underwater towed vehicle maneuverable in both vertical and horizontal axis[C]//Proc. Second Int. Offshore Polar Eng. Conf. US: ISOPE, 1992.

    Google Scholar

    [75] TEIXEIRA F C, AGUIAR A P, PASCOAL A M. Nonlinear control of an underwater towed vehicle[C]//7th IFAC Conference on Manoeuvring and Control of Marine Craft. Lisbon: IFAC, 2006.

    Google Scholar

    [76] GOBAT J I, Grosenbaugh M A. Time domain numerical simulation of ocean cable structures[J]. Ocean Engineering, 2006, 33: 1373-1400.

    Google Scholar

    [77] LEONARD J W, KARNOSKI S R. Simulation of tension controlled cable deployment[J]. Applied Ocean Research, 2001, 12(1): 34-42.

    Google Scholar

    [78] CAMPA G,WILKIE J,INNOCENTI M. Robust control and analysis of a towed underwater vehicle[J]. International Journal of Adaptive Control and Signal Processing,1988,12:689-716.

    Google Scholar

    [79] WU J M,CHWANG A T. Investigation on a two-part underwater maneuverable towed system[J]. Ocean Engineering,2001,28:1079-1096. doi: 10.1016/S0029-8018(00)00024-X

    CrossRef Google Scholar

    [80] KATO N. Underwater towed vehicle maneuverable in both vertical and horizontal planes[C]//First International Offshore and Polar Engineering Conference. Edimburgh, UK, The International Society of Offshore and Polar Engineers, 1991: 85-92.

    Google Scholar

    [81] FRANCISCO C T,ANTÓNIO P A,ANTÓNIO P. Nonlinear adaptive control of an underwater towed vehicle[J]. Ocean Engineering,2010,37:1193-1220. doi: 10.1016/j.oceaneng.2010.05.010

    CrossRef Google Scholar

    [82] MINOWA A, TODA M. Motion control of towed underwater vehicles with movable wings using a high-gain observer based approach[C]. 2015 IEEE 10th Conference on. IEEE. US: IEEE, 2015: 1893-1898.

    Google Scholar

    [83] MINOWA A,TODA M. A high gain observer based approach to robust motion control of towed underwater vehicles[J]. IEEE Journal of Oceanic Engineering,2018(99):1-14.

    Google Scholar

    [84] 吴家鸣, 叶家玮. 自主稳定可控制水下拖体的设计及控制性能[J]. 华南理工大学学报. 2005, 33(5): 69-73.

    Google Scholar

    [85] 井安言,裴武波. 水下拖体姿态角自适应控制器设计[J]. 数字海洋与水下攻防,2019,2(4):80-86.

    Google Scholar

    [86] 井安言,佘湖清. 基于神经网络观测器的水下拖体输出反馈姿态控制[J]. 兵工学报,2020,41(12):2504-2513. doi: 10.3969/j.issn.1000-1093.2020.12.016

    CrossRef Google Scholar

    [87] 刘启帮,艾艳辉,王盟,等. 基于CFD仿真的导流缆侧漂分析[J]. 大连海事大学学报,2016,42(2):41-45. doi: 10.16411/j.cnki.issn1006-7736.2016.02.007

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(3190) PDF downloads(596) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint