2022 Vol. 38, No. 12
Article Contents

GONG Guangchuan, LI Lei, HE Wang, ZHANG Wei, GAO Yifan, CHENG Linyan, YANG Zhipeng. Numerical simulation of post-mass transport deposition: a case study of the margin slope of South China Sea[J]. Marine Geology Frontiers, 2022, 38(12): 75-83. doi: 10.16028/j.1009-2722.2021.330
Citation: GONG Guangchuan, LI Lei, HE Wang, ZHANG Wei, GAO Yifan, CHENG Linyan, YANG Zhipeng. Numerical simulation of post-mass transport deposition: a case study of the margin slope of South China Sea[J]. Marine Geology Frontiers, 2022, 38(12): 75-83. doi: 10.16028/j.1009-2722.2021.330

Numerical simulation of post-mass transport deposition: a case study of the margin slope of South China Sea

More Information
  • The mass transport deposits (MTDs) have largely-undulating top surface, which would affect post-MTD turbidity currents deposition and distribution. A systematic study on the MTD deposition is helpful for interpreting the deposit pattern of submarine fan. Based on 3D seismic data in the Qiongying continental slope of the northern South China Sea, the MTD sedimentary system, and its overburden deposits, and the impact of the top surface on post-MTD sedimentation were numerically simulated using the Flow3D. Results show that: ① the top surface of translational domain is flat and gentle, on which distributed broad-gentle troughs; and the top surface of the toe domain fluctuates greatly, forming an isolated troughs. ② On the top surface of the translational domain forms a large and continuous submarine fan, while a small submarine fan can form in the toe domain; the slip slope of local uplift can develop different-sized submarine fans. The terminal domain is a favorable area for large submarine fans formation. ③ The greater relief of the top surface, the more conducive to sediment unloading and deposit, and the larger submarine fan formation.

  • 加载中
  • [1] NWOKO J,KANE I,HUUSE M. Mass transport deposit (MTD) relief as a control on post-MTD sedimentation:insights from the Taranaki Basin,offshore New Zealand[J]. Marine and Petroleum Geology,2020,120:104489. doi: 10.1016/j.marpetgeo.2020.104489

    CrossRef Google Scholar

    [2] 刘铮,陈端新,朱友生,等. 基于水下自主航行器(AUV)的神狐峡谷谷底块体搬运沉积特征及其对深水峡谷物质输运过程的指示[J]. 海洋地质与第四纪地质,2021,41(2):13-21. doi: 10.16562/j.cnki.0256-1492.2020110301

    CrossRef Google Scholar

    [3] 王大伟,吴时国,秦志亮,等. 南海陆坡大型块体搬运体系的结构与识别特征[J]. 海洋地质与第四纪地质,2009,29(5):65-72.

    Google Scholar

    [4] 杜浩,石万忠,梁金强,等. 琼东南盆地块体搬运沉积体系成因及其对水合物成藏的影响[J]. 石油地球物理勘探,2021,56(4):869-881,676. doi: 10.13810/j.cnki.issn.1000-7210.2021.04.020

    CrossRef Google Scholar

    [5] BULL S,CARTWRIGHT J,HUUSE M. A review of kinematic indicators from mass-transport complexes using 3D seismic data[J]. Marine and Petroleum Geology,2008,26(7):1132-1151.

    Google Scholar

    [6] 秦雁群,万仑坤,计智锋,等. 深水块体搬运沉积体系研究进展[J]. 石油与天然气地质,2018,39(1):140-152.

    Google Scholar

    [7] 李磊,王英民,徐强,等. 南海北部白云凹陷21Ma深水重力流沉积体系[J]. 石油学报,2012,33(5):798-806. doi: 10.7623/syxb201205008

    CrossRef Google Scholar

    [8] 唐常锐,徐秀刚,孙秉才,等. 天然气水合物分解诱发海底滑坡影响因素分析及致灾风险评价[J]. 海洋地质前沿,2021,37(5):14-21. doi: 10.16028/j.1009-2722.2021.021

    CrossRef Google Scholar

    [9] 李林,张成,闫春,等. 琼东南盆地华光凹陷大型海底重力滑动系统特征及其成因机制[J]. 地球科学,2021,46(10):3707-3716.

    Google Scholar

    [10] BROWNE G H,BULL S,ARNOT M J,et al. The role of mass transport deposits contributing to fluid escape:Neogene outcrop and seismic examples from north Taranaki,New Zealand[J]. Geo-Marine Letters,2020,40(5):1-19.

    Google Scholar

    [11] KNELLER B,DYKSTRA M,FAIRWEATHER L,et al. Mass-transport and slope accommodation:implications for turbidite sandstone reservoirs[J]. AAPG Bulletin,2016,100(2):213-235. doi: 10.1306/09011514210

    CrossRef Google Scholar

    [12] 孙启良,解习农,吴时国. 南海北部海底滑坡的特征、灾害评估和研究展望[J]. 地学前缘,2021,28(2):258-270. doi: 10.13745/j.esf.sf.2020.9.3

    CrossRef Google Scholar

    [13] 王俊勤,张广旭,陈端新,等. 琼东南盆地陵水研究区海底地质灾害类型、分布和成因机制[J]. 海洋地质与第四纪地质,2019,39(4):87-95. doi: 10.16562/j.cnki.0256-1492.2018052303

    CrossRef Google Scholar

    [14] 王海荣,王英民,邱燕,等. 南海北部陆坡的地貌形态及其控制因素[J]. 海洋学报(中文版),2008,30(2):70-79. doi: 10.3321/j.issn:0253-4193.2008.02.009

    CrossRef Google Scholar

    [15] TANABE S,HORI S,SAITO Y,et al. Song Hong (Red River) Delta evolution related to millennium-scale Holocene sea-level changes[J]. Quaternary Science Reviews,2003,22(21):2345-2361.

    Google Scholar

    [16] 朱友生,王艳秋,冯湘子,等. 琼东南盆地陵水17-2深水气田开发区表层沉积物类型及工程地质特性[J]. 海洋地质与第四纪地质,2022,42(1):45-56. doi: 10.16562/j.cnki.0256-1492.2020120601

    CrossRef Google Scholar

    [17] 蒋卫威,鱼京善,陈寅生,等. 基于FLOW3D的梅溪洪濑段桥梁雍水三维数值模拟[J]. 南水北调与水利科技,2021,19(4):776-785.

    Google Scholar

    [18] HSU S K,KUO J,LO C L,et al. Turbidity currents,submarine landslides and the 2006 Pingtung Earthquake off SW Taiwan[J]. Terrestrial,Atmospheric and Oceanic Sciences,2008,19(6):767-772. doi: 10.3319/TAO.2008.19.6.767(PT)

    CrossRef Google Scholar

    [19] HUANG H,IMRAN J,PIRMEZ C. Numerical modeling of poorly sorted depositional turbidity currents[J]. Journal of Geophysical Research,2007,112:1-15.

    Google Scholar

    [20] 高仁祖, 吴海涛, 顾声龙, 等. 台阶式溢洪道的δ-LES-SPH数值模拟[J/OL]. 计算力学学报, 2022:1-10. Doi. 10.13673/j. cnki. cn37-1359/te. 202201022.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(966) PDF downloads(15) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint