2022 Vol. 38, No. 12
Article Contents

LIU Wenchao, WANG Yue, LIAO Xinwu, KANG Kai, ZHANG Lei, LIU Weilin. Formation and origination of dominant reservoir in metamorphic buried hills in the southwestern Bohai Sea[J]. Marine Geology Frontiers, 2022, 38(12): 47-55. doi: 10.16028/j.1009-2722.2021.296
Citation: LIU Wenchao, WANG Yue, LIAO Xinwu, KANG Kai, ZHANG Lei, LIU Weilin. Formation and origination of dominant reservoir in metamorphic buried hills in the southwestern Bohai Sea[J]. Marine Geology Frontiers, 2022, 38(12): 47-55. doi: 10.16028/j.1009-2722.2021.296

Formation and origination of dominant reservoir in metamorphic buried hills in the southwestern Bohai Sea

  • The Neoarchean metamorphic buried hill is the most important oil-gas exploration target layer in the southwestern Bohai Sea, North China. Understanding the formation and origination of the metamorphic reservoir will provide important guidance for future exploration in this region. The drilling, logging, coring, and thin section observation, as well as the regional tectonic stress field and geological outcrop were analyzed, the developmental laws of the dominant reservoir in weathering zone of the metamorphic buried hills were studied, and the origination were discussed. Results show that dominant reservoirs are better developed, in horizontal direction, in ancient fold zone, strike-slip zone, paleo-highland zone, and nearby-fault zone, and the formation of dominant reservoirs was controlled by tectonic activities and weathering agents; whereas in vertical direction, the lower weathering zone has a bigger fracture opening and higher permeability, while the upper weathering zone has greater porosities, and the formation of dominant reservoirs was controlled by weathering eluviation and compaction. The dominant direction of fractures is near east-west in range of 45°-135°, which is controlled by the “reactivation” during the Himalayan orogenesis. The model of the formation of the dominant reservoir could be described as in a “fish back” pattern, which has been evolved from compressional fracturing and weather eluviation filling during the Indosinian and Yanshanian orogeneses, to the extensional “reactivation” and sedimentary re-compaction during the Himalayan orogenesis.

  • 加载中
  • [1] SMITH J E. Basement reservoir of La Paz-Mara Oil Fields,Western Venezuela:geological notes[J]. AAPG Bulletin,1956,40(2):380-385.

    Google Scholar

    [2] PLOTNIKOVA I N. Nonconventional hydrocarbon targets in the crystalline basement, and the problem of the recent replenishment of hydrocarbon reserves[J]. Journal of Geochemical Exploration, 2006, 89(1/3): 335-338.

    Google Scholar

    [3] 田纳新,陈文学,霍红,等. 利比亚锡尔特盆地油气地质特征及有利区带预测[J]. 石油与天然气地质,2008,29(4):485-490. doi: 10.3321/j.issn:0253-9985.2008.04.011

    CrossRef Google Scholar

    [4] NELSON R A,MOLDOVANYI E P,MATCEK C C, et al. Production characteristics of the fractured reservoirs of La Paz filed,Maracaibo Basin,Venezuela[J]. AAPG Bulletin,2000,84(11):1791-1809.

    Google Scholar

    [5] COUNG T X,WARREN J K. Bach Ho field,a fractured granitic basement reservoir,Cuu Long Basin,offshore SE Vietnam:a “buried-hill” play[J]. Journal of Petroleum Geology,2009,32(2):129-156. doi: 10.1111/j.1747-5457.2009.00440.x

    CrossRef Google Scholar

    [6] YE T, CHEN A Q, NIU C M, et al. Structural, petrophysical and lithological characterization of crystalline bedrock buried-hill reservoirs: a case study of the southern Jinzhou Oilfield in offshore Bohai Bay Basin, North China[J]. Journal of Petroleum Science and Engineering, 2021, 196 : 107950.

    Google Scholar

    [7] 曾联波,张吉昌. 辽河坳陷边台变质岩潜山油藏裂缝分布特征[J]. 石油大学学报(自然科学版),1997,21(3):16-19.

    Google Scholar

    [8] 黄保纲,汪利兵,赵春明,等. JZS油田潜山裂缝储层形成机制及分布预测[J]. 石油与天然气地质,2011,32(54):710-718.

    Google Scholar

    [9] 周心怀,项华,于水,等. 渤海锦州南变质岩潜山油藏储集层特征与发育控制因素[J]. 石油勘探与开发,2005,32(6):17-21. doi: 10.3321/j.issn:1000-0747.2005.06.004

    CrossRef Google Scholar

    [10] 王昕,周心怀,徐国胜,等. 渤海海域蓬莱9-1花岗岩潜山大型油气田储层发育特征与主控因素[J]. 石油与天然气地质,2015,36(2):262-270. doi: 10.11743/ogg20150211

    CrossRef Google Scholar

    [11] 王德英,王清斌,刘晓健,等. 渤海湾盆地海域片麻岩潜山风化壳型储层特征及发育模式[J]. 岩石学报,2019,35(4):1181-1193. doi: 10.18654/1000-0569/2019.04.13

    CrossRef Google Scholar

    [12] 李欣,谢庆宾,牛花朋,等. 岩浆岩与变质岩风化壳储集层差异—以阿尔金山山前带东段基岩储集层为例[J]. 新疆石油地质,2021,41(2):133-146.

    Google Scholar

    [13] 龚再升. 继续勘探中国近海盆地花岗岩储层油气藏[J]. 中国海上油气,2010,22(4):213-220. doi: 10.3969/j.issn.1673-1506.2010.04.001

    CrossRef Google Scholar

    [14] 薛永安. 渤海海域深层天然气勘探的突破与启示[J]. 天然气工业,2019,39(1):11-20. doi: 10.3787/j.issn.1000-0976.2019.01.002

    CrossRef Google Scholar

    [15] 施和生,王清斌,王军,等. 渤中凹陷深层渤中19-6构造大型凝析气田的发现及勘探意义[J]. 中国石油勘探,2019,24(1):36-45. doi: 10.3969/j.issn.1672-7703.2019.01.005

    CrossRef Google Scholar

    [16] 肖述光,吕丁友,侯明才,等. 渤海海域西南部中生代构造演化过程与潜山形成机制[J]. 天然气工业,2019,39(5):34-44. doi: 10.3787/j.issn.1000-0976.2019.05.004

    CrossRef Google Scholar

    [17] 徐长贵,于海波,王军,等. 渤海海域渤中19-6 大型凝析气田形成条件与成藏特征[J]. 石油勘探与开发,2019,46(1):25-38. doi: 10.11698/PED.2019.01.03

    CrossRef Google Scholar

    [18] 侯明才,曹海洋,李慧勇,等. 渤海海域渤中19-6 构造带深层潜山储层特征及其控制因素[J]. 天然气工业,2019,39(1):33-44. doi: 10.3787/j.issn.1000-0976.2019.01.004

    CrossRef Google Scholar

    [19] 杜晓峰,刘晓健,张新涛,等. 渤海海域太古界变质岩储层特征与形成控制因素[J]. 中国海上油气,2021,33(3):15-27.

    Google Scholar

    [20] 李三忠,索艳慧,戴黎明,等. 渤海湾盆地形成与华北克拉通破坏[J]. 地学前缘,2010,17(4):64-89.

    Google Scholar

    [21] 牛成民,王昕,叶涛,等. 渤中凹陷西南部大型变质岩潜山裂缝特征及预测方法[J]. 石油钻采工艺,2018,40(增刊):66-69. doi: 10.13639/j.odpt.2018.S0.018

    CrossRef Google Scholar

    [22] 于福生,漆家福,王春英. 华北东部印支期构造变形研究[J]. 中国矿业大学学报,2002,31(4):402-406. doi: 10.3321/j.issn:1000-1964.2002.04.017

    CrossRef Google Scholar

    [23] 李勇,钟建华,温志峰,等. 印支运动对济阳坳陷构造形态形成演化的影响[J]. 地质论评,2006,52(3):321-330. doi: 10.3321/j.issn:0371-5736.2006.03.013

    CrossRef Google Scholar

    [24] 吴梅莲. 燕山运动在济阳坳陷的地质表现以及中生界潜山研究[D]. 武汉: 中国地质大学, 2007.

    Google Scholar

    [25] 吴永平,付立新,杨池银,等. 黄骅坳陷中生代构造演化对潜山油气成藏的影响[J]. 石油学报,2002,23(2):16-21. doi: 10.3321/j.issn:0253-2697.2002.02.004

    CrossRef Google Scholar

    [26] 侯贵廷,钱祥麟,蔡东升. 渤海湾盆地中、新生代构造演化研究[J]. 北京大学学报(自然科学版),2001,37(6):845-851. doi: 10.3321/j.issn:0479-8023.2001.06.016

    CrossRef Google Scholar

    [27] 张任风,张占松,张超谟,等. 渤中19-6气田潜山变质岩储层类型特征与电成像测井识别[J]. 东北石油大学学报,2019,43(5):58-65.

    Google Scholar

    [28] 佟彦明,钟巧霞. 利用平衡剖面快速判定盆地区域古构造应力方向:一种分析古构造应力方向的新方法[J]. 石油实验地质,2007,29(6):633-636. doi: 10.3969/j.issn.1001-6112.2007.06.020

    CrossRef Google Scholar

    [29] 刘光炎,蒋录全. 平衡剖面技术与地震资料解释[J]. 石油地球物理勘探,1995,30(6):833-844. doi: 10.13810/j.cnki.issn.1000-7210.1995.06.022

    CrossRef Google Scholar

    [30] 刘栋梁,方小敏,王亚东,等. 平衡剖面方法恢复柴达木盆地新生代地层缩短及其意义[J]. 地质科学,2008,43(4):637-647. doi: 10.3321/j.issn:0563-5020.2008.04.002

    CrossRef Google Scholar

    [31] 康凯,赵林,罗宪波,等. 裂缝性潜山气藏产能评价新方法及其应用[J]. 中国海上油气,2021,33(3):100-106.

    Google Scholar

    [32] 刘春,张荣虎,张惠良,等. 塔里木盆地库车前陆冲断带不同构造样式裂缝发育规律:证据来自野外构造裂缝露头观测[J]. 天然气地球科学,2017,28(1):52-61.

    Google Scholar

    [33] 宋勇,冯建伟,戴俊生,等. 前陆冲断带构造应力场与裂缝发育关系[J]. 地质力学学报,2010,16(3):310-324. doi: 10.3969/j.issn.1006-6616.2010.03.008

    CrossRef Google Scholar

    [34] 张鹏飞,刘惠民,曹忠祥,等. 太古宇潜山风化壳储层发育主控因素分析:以鲁西济阳地区为例[J]. 吉林大学学报(地球科学版),2015,45(5):1289-1298.

    Google Scholar

    [35] 徐守立,尤丽,毛雪莲,等. 琼东南盆地松南低凸起周缘花岗岩潜山储层特征及控制因素[J]. 地球科学,2019,44(8):2717-2728.

    Google Scholar

    [36] 付广,王有功,黄劲松. 倾斜裂缝垂向封闭性演化特征研究:以海拉尔盆地贝尔凹陷布达特群为例[J]. 地质科学,2008,43(1):23-33. doi: 10.3321/j.issn:0563-5020.2008.01.003

    CrossRef Google Scholar

    [37] 付广,王国民,王有功. 贝尔凹陷布达特群垂直裂缝垂向封闭性演化特征[J]. 吉林大学学报(地球科学版),2007,37(5):913-918.

    Google Scholar

    [38] 叶涛,韦阿娟,曾金昌,等. 渤海湾盆地中生代构造差异演化与潜山油气差异富集[J]. 地质科学,2019,54(4):1135-1154. doi: 10.12017/dzkx.2019.064

    CrossRef Google Scholar

    [39] 叶涛,韦阿娟,鲁凤婷,等. 渤海海域西南部前新生代反转构造特征及成因机制[J]. 地质学报,2019,93(2):317-328.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(586) PDF downloads(18) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint