2023 Vol. 39, No. 1
Article Contents

TAO Wenfang, LI Hongbo, ZHENG Jinyun, ZHANG Qinglin, LI Yuanping, JIA Zhaoyang, DONG Ming. Geological structure of Zhusi Depression in ultra-deep water area on the continental margin of the northern South China Sea and its control on the development of source rocks[J]. Marine Geology Frontiers, 2023, 39(1): 40-48. doi: 10.16028/j.1009-2722.2021.287
Citation: TAO Wenfang, LI Hongbo, ZHENG Jinyun, ZHANG Qinglin, LI Yuanping, JIA Zhaoyang, DONG Ming. Geological structure of Zhusi Depression in ultra-deep water area on the continental margin of the northern South China Sea and its control on the development of source rocks[J]. Marine Geology Frontiers, 2023, 39(1): 40-48. doi: 10.16028/j.1009-2722.2021.287

Geological structure of Zhusi Depression in ultra-deep water area on the continental margin of the northern South China Sea and its control on the development of source rocks

  • The overall water depth of Zhusi Depression in the Pearl River Mouth Basin is more than 1500 m with very low degree of the exploration. The oil and gas revealed by drilling has shown the existence of source rocks in this area, and seismic data present a vast and thick source rocks in the Paleogene strata. As a new oil and gas exploration area marching towards ultra-deep water in the north of the South China Sea, we analyzed the advantages and disadvantages of petroleum geological conditions in each depression. Based on the knowledge of the formation mechanism of six types of fault depressions in the Pearl River Mouth Basin, Zhusi Depression were divided into three representative fault depression structural styles: inter crustal ductile rheological type of Atlantic magma-poor continental margin, supracrustal magmatic underplating type of Atlantic magma-rich continental margin, and pre-existing splicing type of supracrustal magmatic on Atlantic magma-poor continental margin. Using the 2Dmove software and decompaction technology, the subsidence rate and extension rate of each depression were restored. Combining a large number of seismic profiles, the geological structure of Zhusi Depression and its impact on the development of source rocks were studied in depth, and the differences of source rock development background under different fault depression structures were clarified. Results show that the development conditions of source rocks in Liwan and Heshan depressions are superior, which can be regarded as an important exploration breakthrough point in the ultra-deep water area in the north of the South China Sea.

  • 加载中
  • [1] 龚再升. 中国近海大油气田[M]. 北京: 石油工业出版社, 1997.

    Google Scholar

    [2] 朱伟林,郑金云. 南海北部深水油气新认识[J]. 科技导报,2020,38(18):89-98. doi: 10.3981/j.issn.1000-7857.2020.18.014

    CrossRef Google Scholar

    [3] 吴婷婷,张丽丽,吴哲,等. 珠江口盆地前新生代先存断裂特征及动力背景:以惠州凹陷和番禺4洼为例[J]. 海洋地质前沿,2022,38(6):54-62.

    Google Scholar

    [4] PERON-PINVIDIC G,MANATSCHAL G. The final rifting evolution at deep magma-poor passive margins from Iberia-Newfoundland:a new point of view[J]. International Journal of Earth Sciences,2009,98(7):1581-1597. doi: 10.1007/s00531-008-0337-9

    CrossRef Google Scholar

    [5] MOHN G,MANATSCHAL G,BELTRANDO M,et al. Necking of continental crust in magma-poor rifted margins:evidence from the fossil Alpine Tethys margins[J]. Tectonics,2012,31(1):1-28.

    Google Scholar

    [6] SUTRA E,MANATSCHAL G,MOHO G,et al. Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins[J]. Geochemistry,Geophysics,Geosystems,2013,14(8):2575-2597.

    Google Scholar

    [7] 贾培蒙,张向涛,陈维涛,等. 珠江口盆地惠州凹陷惠州21古潜山的形成演化及其对深层油气成藏的控制[J]. 海洋地质前沿,2021,37(12):27-37. doi: 10.16028/j.1009-2722.2021.187

    CrossRef Google Scholar

    [8] 庞雄,施和生,朱明,等. 再论白云深水区油气勘探前景[J]. 中国海上油气,2014,26(3):23-29.

    Google Scholar

    [9] 朱筱敏,葛家旺,赵宏超,等. 陆架边缘三角洲研究进展及实例分析[J]. 沉积学报,2017,35(5):945-955.

    Google Scholar

    [10] 庞雄,任建业,郑金云,等. 陆缘地壳强烈拆离薄化作用下的油气地质特征:以南海北部陆缘深水区白云凹陷为例[J]. 石油勘探与开发,2018,45(1):27-39. doi: 10.11698/PED.2018.01.03

    CrossRef Google Scholar

    [11] 庞雄,郑金云,梅廉夫,等. 先存俯冲陆缘背景下珠江口盆地断陷结构的多样性[J]. 石油勘探与开发,2021,48(4):1-11.

    Google Scholar

    [12] 任建业,庞雄,雷超,等. 被动陆缘洋陆转换带和岩石圈伸展破 裂过程分析及其对南海陆缘深水盆地研究的启示[J]. 地学前缘,2015,22(1):102-114.

    Google Scholar

    [13] 孙珍,刘思青,庞雄,等. 被动大陆边缘伸展-破裂过程研究进展[J]. 热带海洋学报,2016,35(1):1-16. doi: 10.11978/2015030

    CrossRef Google Scholar

    [14] 任建业,庞雄,于鹏,等. 南海北部陆缘深水-超深水盆地成因机制分析[J]. 地球物理学报,2018,61(12):4901-4920. doi: 10.6038/cjg2018L0558

    CrossRef Google Scholar

    [15] 庞雄,陈长民,彭大钧,等. 南海北部白云深水区之基础地质[J]. 中国海上油气,2008,20(4):215-222. doi: 10.3969/j.issn.1673-1506.2008.04.001

    CrossRef Google Scholar

    [16] 米立军,张向涛,庞雄,等. 珠江口盆地形成机制与油气地质[J]. 石油学报,2019,40(s1):1-10. doi: 10.7623/syxb2019S1001

    CrossRef Google Scholar

    [17] 李洪博,郑金云,庞雄,等. 南海北部陆缘差异拆离作用结构样式与控制因素:以珠江口盆地白云-荔湾深水区为例[J]. 中国海上油气,2020,32(4):24-35.

    Google Scholar

    [18] 施和生,杜家元,梅廉夫,等. 珠江口盆地惠州运动及其意义[J]. 石油勘探与开发,2020,47(3):1-15.

    Google Scholar

    [19] 梁杰,刘培,陈维涛,等. 适用于改造型洼陷的烃源规模识别技术:以西江主洼为例[J]. 海洋地质前沿,2022,38(6):78-87.

    Google Scholar

    [20] 刘培,蒋有录,刘华,等. 渤海湾盆地沾化凹陷断层活动与新近系油气成藏关系[J]. 天然气地球科学,2013,24(3):541-547.

    Google Scholar

    [21] 张功成. 南海北部陆坡深水区构造演化及其特征[J]. 石油学报,2010,31(4):528-533. doi: 10.7623/syxb201004002

    CrossRef Google Scholar

    [22] 赵中贤,周蒂,廖杰,等. 珠江口盆地陆架区岩石圈伸展模拟及裂后沉降分析[J]. 地质学报,2010,84(8):1135-1145.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(886) PDF downloads(207) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint