2023 Vol. 39, No. 4
Article Contents

DONG Zhen, LIANG Jin, CAO Zhimin, HE Huizhong, CHEN Liang, LV Xiuya, SUN Jinye. Geological characteristics at 51°E (Segment 26) of the Southwest Indian Ridge: implication to submarine hydrothermal activity[J]. Marine Geology Frontiers, 2023, 39(4): 14-22. doi: 10.16028/j.1009-2722.2021.283
Citation: DONG Zhen, LIANG Jin, CAO Zhimin, HE Huizhong, CHEN Liang, LV Xiuya, SUN Jinye. Geological characteristics at 51°E (Segment 26) of the Southwest Indian Ridge: implication to submarine hydrothermal activity[J]. Marine Geology Frontiers, 2023, 39(4): 14-22. doi: 10.16028/j.1009-2722.2021.283

Geological characteristics at 51°E (Segment 26) of the Southwest Indian Ridge: implication to submarine hydrothermal activity

More Information
  • In the survey of oceanic polymetallic sulphides, detailed geological mapping is needed for a known hydrothermal area, which often covers a small area, contains less geological elements, and is not connected with regional tectonism and magmatism. Based on the data of deep-towed optical system obtained from ocean voyages over the years in the Segment 26 (51°E) of the Southwest Indian Ridge (SWIR), and combined with high-precision multi-beam bathymetric data, we proposed a systematic division principle of substrate hydrothermal anomaly, and identified four types of substrate hydrothermal anomaly: hydrothermal altered rocks or breccia, suspected hydrothermal sediments, hydrothermal organisms and their remains enrichment, and cemented carbonate rocks. The results of high-resolution submarine geological mapping show that there are 4 abnormal areas of hydrothermal activity in Segment 26. The hydrothermal activity occurrence rate of Segment 26 ranged 2~10, which is at least 1.8 times higher of the global one using empirical formula. Therefore, there may be more submarine hydrothermal activities in Segment 26 with melting anomalies or non-transform discontinuities of ultra-slow spreading ridge, and it also has the potential to form large polymetallic sulfide deposits.

  • 加载中
  • [1] BEAULIEU S E, BAKER E T, GERMAN C R, et al. On the global distribution of hydrothermal vent fields: one decade later[C]//Paper presented at the Agu Fall Meeting, 2012.

    Google Scholar

    [2] BEAULIEU S E,BAKER E T,GERMAN C R,et al. Where are the undiscovered hydrothermal vents on oceanic spreading ridges?[J]. Deep-sea Research Part II - Topical Studies in Oceanography,2015,121:202-212. doi: 10.1016/j.dsr2.2015.05.001

    CrossRef Google Scholar

    [3] GERMAN C R,BAKER E T,MEVEL C A,et al. Hydrothermal activity along the Southwest Indian Ridge[J]. Nature,1998,395(6701):490-493. doi: 10.1038/26730

    CrossRef Google Scholar

    [4] EDMONDS H N,MICHAEL P J,BAKER E T,et al. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel Ridge in the Arctic Ocean.[J]. Nature,2003,421(6920):252-256. doi: 10.1038/nature01351

    CrossRef Google Scholar

    [5] GERMAN C R,PETERSER S,HANNINGTON M D. Hydrothermal exploration of mid-ocean ridges:where might the largest sulfide deposits be forming?[J]. Chemical Geology,2016,420(1):114-126.

    Google Scholar

    [6] BAKER E T,CHEN Y J,MORGAN J P. The relationship between near-axis hydrothermal cooling and the spreading rate of mid-ocean ridges[J]. Earth and Planetary Science Letters,1996,142:137-145. doi: 10.1016/0012-821X(96)00097-0

    CrossRef Google Scholar

    [7] BAKER E T,URABE T. Extensive distribution of hydrothermal plumes along the superfast spreading East Pacific Rise,13°30′–18°40′S[J]. Journal of Geophysical Research,1996,101:8685-8695. doi: 10.1029/95JB03746

    CrossRef Google Scholar

    [8] HERZIG P M,PLUGER W L. Exploration for hydrothermal activity near the Rodriguez Triple Junction,Indian Ocean[J]. The Canadian Mineralogist,1988,26:721-736.

    Google Scholar

    [9] GAMOA T,NAKAYAMA E,SHITASHIMA K,et al. Hydrothermal plumes at the Rodriguez Triple Junction,Indian Ridge[J]. Earth and Planetary Science Letters,1996,142(1/2):261-270.

    Google Scholar

    [10] GAMOA T,CHIBAB H,YAMANAKAC T,et al. Chemical characteristics of newly discovered black smoker fluids and associated hydrothermal plumes at the Rodriguez Triple Junction,Central Indian Ridge[J]. Earth and Planetary Science Letters,2001,193(3):371-379.

    Google Scholar

    [11] DOVER V C L. Biogeography and ecological setting of Indian Ocean hydrothermal vents[J]. Science,2001,294(5543):818-823. doi: 10.1126/science.1064574

    CrossRef Google Scholar

    [12] 陶春辉,周建平,李怀明,等. 西南印度洋脊49°39′E热液区硫化物烟囱体的矿物学和地球化学特征及其地质意义[J]. 科学通报,2011,56(28/29):2413-2423.

    Google Scholar

    [13] 陶春辉,李怀明,金肖兵,等. 西南印度洋脊的海底热液活动和硫化物勘探[J]. 科学通报,2014,59(19):1812-1822.

    Google Scholar

    [14] TAO C H,LIN J,GUO S Q,et al. First active hydrothermal vents on an ultraslow-spreading center:Southwest Indian Ridge[J]. Geology,2012,40(1):47-50. doi: 10.1130/G32389.1

    CrossRef Google Scholar

    [15] BEAULIEU S E,BAKER E T,GERMAN C R,et al. An authoritative global database for active submarine hydrothermal vent fields[J]. Geochemistry Geophysics Geosystems,2013,14(11):4892-4905. doi: 10.1002/2013GC004998

    CrossRef Google Scholar

    [16] SAUTER D,PATRIAT P,ROMMEVAUX J C,et al. The Southwest Indian Ridge between 49°15'E and 57°E:focused accretion and magma redistribution[J]. Earth and Planetary Science Letters,2001,192(3):303-317. doi: 10.1016/S0012-821X(01)00455-1

    CrossRef Google Scholar

    [17] LI J B,JIAN H C,CHEN Y J,et al. Seismic observation of an extremely magmatic accretion at the ultraslow spreading Southwest Indian Ridge[J]. Geophysical Research Letters,2015,42(8):2656-2663. doi: 10.1002/2014GL062521

    CrossRef Google Scholar

    [18] NIU X W,RUAN A G,LI J B,et al. Along-axis variation in crustal thickness at the ultraslow spreading Southwest Indian Ridge (50°E) from a wide-angle seismic experiment[J]. Geochemistry Geophysics Geosystems,2015,16(2):468-485. doi: 10.1002/2014GC005645

    CrossRef Google Scholar

    [19] JIAN H C,SINGH S C,CHEN Y J,et al. Evidence of an axial magma chamber beneath the ultraslow-spreading Southwest Indian Ridge[J]. Geology,2017,45(2):143-146. doi: 10.1130/G38356.1

    CrossRef Google Scholar

    [20] ZHANG H T, TAO C H, LI J H. Different crust failure modes controlled by spreading obliquity and its implication: insight from Southwest Indian Ridge 46-52°E[C]//InterRidge Theoretical Institute, 2015.

    Google Scholar

    [21] LIU C,LI J,TAO C H,et al. Variations in faulting style of the Southwest Indian Ridge (46°-53.5°E):implications for crustal accretion process at ultraslow-spreading ridges[J]. Tectonophysics,2020:228552.

    Google Scholar

    [22] 翟世奎,于增慧,杜同军. 冲绳海槽中部现代海底热液活动在沉积物中的元素地球化学记录[J]. 海洋学报,2007,29(1):58-65.

    Google Scholar

    [23] 曹红,曹志敏. 西南印度洋中脊海底热液活动[J]. 海洋地质与第四纪地质,2011,31(1):67-75.

    Google Scholar

    [24] 曾志刚,陈祖兴,张玉祥,等. 海底热液活动的环境与产物[J]. 海洋科学,2020,44(7):143-155.

    Google Scholar

    [25] DEMARTIN B J,SOHN R A,CANALES J P,et al. Kinematics and geometry of active detachment faulting beneath the Trans-Atlantic Geotraverse (TAG) hydrothermal field on the Mid-Atlantic Ridge[J]. Geology,2007,35(8):711-714. doi: 10.1130/G23718A.1

    CrossRef Google Scholar

    [26] ANDERSEN C, RUPKE L, GREVEMEYER I, et al. Conditions for high-temperature off-axis venting at the Lgatchev 1 hydrothermal field[C]//EGU General Assembly, 2013.

    Google Scholar

    [27] YU J Y,TAO C H,LIAO S L,et al. Resource estimation of the sulfide-rich deposits of the Yuhuang-1 hydrothermal field on the ultraslow-spreading Southwest Indian Ridge[J]. Ore Geology Reviews,2021,134(7):104169.

    Google Scholar

    [28] LORETO M F,Doan D D,UNER S,et al. Fault-controlled deep hydrothermal flow in a back-arc tectonic setting,SE Tyrrhenian Sea[J]. Scientific Reports,2019,9:17724. doi: 10.1038/s41598-019-53696-z

    CrossRef Google Scholar

    [29] STIX J,KENNEDY B,HANNINGTON M,et al. Caldera-forming processes and the origin of submarine volcanogenic massive sulfide deposits[J]. Geology,2003,31(4):375. doi: 10.1130/0091-7613(2003)031<0375:CFPATO>2.0.CO;2

    CrossRef Google Scholar

    [30] EMBLEY R W,DE RONDE C E J,MERLE S G,et al. Detailed morphology and structure of an active submarine arc caldera:Brothers volcano,Kermadec arc[J]. Economic Geology,2012,107(8):1557-1570. doi: 10.2113/econgeo.107.8.1557

    CrossRef Google Scholar

    [31] STANDISH J J,SIMS K W W. Young off-axis volcanism along the ultraslow-spreading Southwest Indian Ridge[J]. Nature Geoscience,2010,3(4):286-292. doi: 10.1038/ngeo824

    CrossRef Google Scholar

    [32] TAO C H,SEYFRIED W E,LOWELL R P,et al. Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge[J]. Nature Communications,2020,11:1300. doi: 10.1038/s41467-020-15062-w

    CrossRef Google Scholar

    [33] CAROSI R,MONTOMOLI C,IACCARINO S. 20 years of geological mapping of the metamorphic core across Central and Eastern Himalayas[J]. Earth-Science Reviews,2018,177:124-138. doi: 10.1016/j.earscirev.2017.11.006

    CrossRef Google Scholar

    [34] 张涛,JIAN L,高金耀. 西南印度洋中脊热液区的岩浆活动与构造特征[J]. 中国科学:地球科学,2013,43(11):1834-1846.

    Google Scholar

    [35] TUCHOLKE B E,BEHN M D,BUCK W R,et al. Role of melt supply in oceanic detachment faulting and formation of megamullions[J]. Geology,2008,36(6):455-458. doi: 10.1130/G24639A.1

    CrossRef Google Scholar

    [36] MCCAIG A M,CLIFF R A,ESCARTIN J,et al. Oceanic detachment faults focus very large volumes of black smoker fluids[J]. Geology,2007,35(10):935-938. doi: 10.1130/G23657A.1

    CrossRef Google Scholar

    [37] SMITH D K,CANN J R,ESCARTIN J,et al. Widespread active detachment faulting and core complex formation near 13° N on the Mid-Atlantic Ridge[J]. Nature,2006,442(7101):440-443. doi: 10.1038/nature04950

    CrossRef Google Scholar

    [38] 周鹏, 韩喜球, 王叶剑, 等. 拆离断层对海底热液硫化物形成的制约: 来自岩石学和近底观测的证据[C]. 中国矿物岩石地球化学学会第17届学术年会论文摘要集. 2019.

    Google Scholar

    [39] KLISCHIES M,PETERSEN S,DEVEY C W,et al. Geological mapping of the Menez Gwen segment at 37°50′N on the Mid-Atlantic Ridge:implications for accretion mechanisms and associated hydrothermal activity at slow-spreading mid-ocean ridges[J]. Marine Geology,2019,412:107-122. doi: 10.1016/j.margeo.2019.03.012

    CrossRef Google Scholar

    [40] 栾锡武. 现代海底热液活动[M]. 北京: 科学出版社, 2017.

    Google Scholar

    [41] YUE X H,LI H M,REN J Y,et al. Seafloor hydrothermal activity along mid-ocean ridge with strong melt supply:study from Segment 27,Southwest Indian Ridge[J]. Scientific Reports,2019,9:1-10. doi: 10.1038/s41598-018-37186-2

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(2327) PDF downloads(126) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint