2022 Vol. 37, No. 1
Article Contents

YAN Dawei, SUN Zhilei, GENG Wei, LI Ang, CAO Hong, XU Cuiling, ZHANG Xilin, ZHAI Bin, ZHANG Xianrong, LI Qing, WU Nengyou, CAI Feng, LUO Di, SUN Yunbao, ZAHNG Dong, ZHOU Yucheng, LV Taiheng. Characteristics of submarine hydrate pingos and mud volcanoes and their effects on gas hydrate accumulation[J]. Marine Geology Frontiers, 2022, 38(1): 1-13. doi: 10.16028/j.1009-2722.2021.192
Citation: YAN Dawei, SUN Zhilei, GENG Wei, LI Ang, CAO Hong, XU Cuiling, ZHANG Xilin, ZHAI Bin, ZHANG Xianrong, LI Qing, WU Nengyou, CAI Feng, LUO Di, SUN Yunbao, ZAHNG Dong, ZHOU Yucheng, LV Taiheng. Characteristics of submarine hydrate pingos and mud volcanoes and their effects on gas hydrate accumulation[J]. Marine Geology Frontiers, 2022, 38(1): 1-13. doi: 10.16028/j.1009-2722.2021.192

Characteristics of submarine hydrate pingos and mud volcanoes and their effects on gas hydrate accumulation

More Information
  • Submarine hydrate pingos and mud volcanos are both the products of upward migration and discharge of fluids in different phases to the surface. The shallow gas hydrate reservoirs related to these two special geological bodies have unique formation process and occurrence, and at the same time, they are also an important way of carbon-rich fluid emission. However, due to the lack of systematic investigation and research about these two geological bodies, and the lack of attention to shallow gas hydrate resources and carbon leakage, there are still obstacles in fine characterization and accurate discrimination of submarine hydrate pingos and mud volcanoes. This makes it difficult to scientifically evaluate the accumulation process and environmental effects of their associated gas hydrate resources. In this study, by summarizing the existing researches on the submarine hydrate pingos and mud volcanos, the two special geological bodies are compared from the aspects of geomorphic characteristics, internal structure and formation mechanism. The evolution the process of the two geological bodies and their influence on the related gas hydrate accumulation process are systematically analyzed, and the essential differences and relations between the two geological bodies are discussed. We hope this study might provide an important reference for the research on submarine carbon leakage and its contribution to the carbon cycle, as well as the evaluation of global shallow gas hydrate resources.

  • 加载中
  • [1] BOSWELL R,COLLETT T S. Current perspectives on gas hydrate resources[J]. Energy and Environmental Science,2011,4(4):1206-1215.

    Google Scholar

    [2] MILKOV A V. Global estimates of hydrate-bound gas in marine sediments:how much is really out there?[J]. Earth-Science Reviews,2004,66(3):183-197.

    Google Scholar

    [3] TRÉHU A M. Gas hydrates in marine sediments:lessons from scientific ocean drilling[J]. Oceanography,2006,19:124-142. doi: 10.5670/oceanog.2006.11

    CrossRef Google Scholar

    [4] 吴能友,张海啟,杨胜雄,等. 南海神狐海域天然气水合物成藏系统初探[J]. 天然气工业,2007,167(9):1-6. doi: 10.3321/j.issn:1000-0976.2007.09.001

    CrossRef Google Scholar

    [5] SNYDER G T,SANO Y,TAKAHATA N,et al. Magmatic fluids play a role in the development of active gas chimneys and massive gas hydrates in the Japan Sea[J]. Chemical Geology,2020,535:119462. doi: 10.1016/j.chemgeo.2020.119462

    CrossRef Google Scholar

    [6] 蔡峰,吴能友,闫桂京,等. 海洋浅表层天然气水合物成藏特征[J]. 海洋地质前沿,2020,36(9):73-78.

    Google Scholar

    [7] CUNNINGHAM R,LINDHOLM R M. Seismic evidence for widespread gas hydrate formation,offshore West Africa[J]. Petroleum Systems of South Atlantic Margins,2000,73(1):93-106.

    Google Scholar

    [8] HOVLAND M,SVENSEN H. Submarine pingoes:indicators of shallow gas hydrates in a pockmark at Nyegga,Norwegian Sea[J]. Marine Geology,2005,228(1):15-23.

    Google Scholar

    [9] PAULL C K,USSLER W,DALLIMORE S R,et al. Origin of pingo‐like features on the Beaufort Sea shelf and their possible relationship to decomposing methane gas hydrates[J]. Geophysical Research Letters,2007,34(1):223-234.

    Google Scholar

    [10] PAULL C K,NORMARK W R,III W U,et al. Association among active seafloor deformation,mound formation,and gas hydrate growth and accumulation within the seafloor of the Santa Monica Basin,offshore California[J]. Marine Geology,2008,250(3):258-275.

    Google Scholar

    [11] FREIRE A,MATSUMOTO R,SANTOS L A. Structural-stratigraphic control on the umitaka spur gas hydrates of Joetsu Basin in the eastern margin of Japan Sea[J]. Marine & Petroleum Geology,2011,28(10):1967-1978.

    Google Scholar

    [12] SERIÉ C,HUUSE M,SCHØDT N H. Gas hydrate pingoes:deep seafloor evidence of focused fluid flow on continental margins[J]. Geology,2012,40(3):207-210. doi: 10.1130/G32690.1

    CrossRef Google Scholar

    [13] SEROV P,PORTNOV A,MIENERT J,et al. Methane release from pingo‐like features across the South Kara Sea shelf,an area of Thawing offshore permafrost[J]. Journal of Geophysical Research Earth Surface,2015,120(8):1515-1529. doi: 10.1002/2015JF003467

    CrossRef Google Scholar

    [14] WAAGE M,PORTNOV A,SEROV P,et al. Geological controls on fluid flow and gas hydrate pingo development on the Barents Sea margin[J]. Geochemistry,Geophysics,Geosystems,2019,20(2):630-650.

    Google Scholar

    [15] MILKOV A V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates[J]. Marine Geology,2000,167(1):29-42.

    Google Scholar

    [16] KOPF A. Significance of mud volcanism[J]. Reviews of Geophysics,2002,40:1-2.

    Google Scholar

    [17] DIMITROV L I. Mud volcanoes:the most important pathway for degassing deeply buried sediments[J]. Earth-science Reviews,2002,59(1):49-76.

    Google Scholar

    [18] KHOLODOV V N. Mud volcanoes,their distribution regularities and genesis:communication 1. mud volcanic provinces and morphology of mud volcanoes[J]. Lithology and Mineral Resources,2002,37(3):197-209.

    Google Scholar

    [19] 解习农,李思田,胡祥云,等. 莺歌海盆地底辟带热流体输导系统及其成因机制[J]. 中国科学:地球科学,1999,29(3):247-256.

    Google Scholar

    [20] 何家雄,祝有海,马文宏,等. 火山、泥火山/泥底辟及含气陷阱与油气运聚关系[J]. 中国地质,2010,37(6):1720-1732. doi: 10.3969/j.issn.1000-3657.2010.06.018

    CrossRef Google Scholar

    [21] 石万忠,宋志峰,王晓龙,等. 珠江口盆地白云凹陷底辟构造类型及其成因[J]. 地球科学,2009,34(5):778-784.

    Google Scholar

    [22] 杨晓璐,钟思玲,万志峰. 泥底辟/泥火山流体热效应及其对天然气水合物赋存的影响[J]. 海洋地质前沿,2018,34(7):15-23.

    Google Scholar

    [23] 万志峰,张伟,陈崇敏,等. 琼东南盆地冷泉差异发育特征及其深部控制机理[J]. 海洋地质前沿,2021,37(7):1-10.

    Google Scholar

    [24] 何家雄, 万志峰, 张伟, 等. 南海北部泥火山/泥底辟形成演化与油气及水合物成藏[M]. 北京: 科学出版社, 2019: 1-11.

    Google Scholar

    [25] TINIVELLA U,GIUSTINIANI M. An overview of mud volcanoes associated to gas hydrate system[J]. Updates in Volcanology:new Advances in Understanding Volcanic Systems,2012:225-267.

    Google Scholar

    [26] SAUTER E J,MUYAKSHIN S I,CHARLOU J L,et al. Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles[J]. Earth and Planetary Science Letters,2006,243(3):354-365.

    Google Scholar

    [27] KOPF A J,KLAESCHEN D,MASCLE J. Extreme efficiency of mud volcanism in dewatering accretionary prisms[J]. Earth and Planetary Science Letters,2001,189(3):295-313.

    Google Scholar

    [28] ETIOPE G,MILKOV A V. A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere[J]. Environmental Geology,2004,46(8):997-1002. doi: 10.1007/s00254-004-1085-1

    CrossRef Google Scholar

    [29] JUDD A G,HOVLAND M,DIMITROV L I,et al. The geological methane budget at continental margins and its influence on climate change[J]. Geofluids,2002,2(2):109-126. doi: 10.1046/j.1468-8123.2002.00027.x

    CrossRef Google Scholar

    [30] MILKOV A V,SASSEN R,APANASOVICH T V,et al. Global gas flux from mud volcanoes:a significant source of fossil methane in the atmosphere and the ocean[J]. Geophysical Research Letters,2003,30(2):91-94.

    Google Scholar

    [31] JUDD A. Mud volcanoes, geodynamics and seismicity[M]. Springer, 2005: 147-157.

    Google Scholar

    [32] 李昂,蔡峰,李清,等. 浅表层泥火山型天然气水合物成藏地质模型[J]. 海洋地质前沿,2020,36(9):94-100.

    Google Scholar

    [33] MAZZINI A,ETIOPE G. Mud volcanism:an updated review[J]. Earth-Science Reviews,2017,168:81-112. doi: 10.1016/j.earscirev.2017.03.001

    CrossRef Google Scholar

    [34] 徐翠玲,孙治雷,吴能友,等. 海底泥火山的甲烷迁移与转化及其对海洋碳输入的影响[J]. 海洋地质与第四纪地质,2020,40(6):1-13.

    Google Scholar

    [35] CIAIS P, CHRIS S, GOVINDASAMY B, et al. Carbon and Other Biogeochemical Cycles[M]//Climate Change 2013: the Physical Science Basis. 2013: 465-570.

    Google Scholar

    [36] 张金华,魏 伟,刘 杰,等. 海底水合物冰丘的特征及意义[J]. 海洋地质与第四纪地质,2017,37(1):117-124.

    Google Scholar

    [37] MACKAY J. Pingo growth and collapse,Tuktoyaktuk Peninsula area,western Arctic coast,Canada:a long-term field study[J]. Géographie Physique Et Quaternaire,1998,52(3):271-323.

    Google Scholar

    [38] YOSHIKAWA K,SHARKHUU N,SHARKHUU A. Groundwater hydrology and stable isotope analysis of an open‐system pingo in northwestern Mongolia[J]. John Wiley & Sons,Ltd,2013,24(3):175-183.

    Google Scholar

    [39] ANDREASSEN K,HUBBARD A,WINSBORROW W,et al. Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor[J]. Science,2017,356(6341):948-953. doi: 10.1126/science.aal4500

    CrossRef Google Scholar

    [40] KIOKA A. Geological occurrence and morphological feature of submarine mud volcanoes:a brief review[J]. The Journal of the Geological Society of Japan,2019,126(1):17-28.

    Google Scholar

    [41] CHEN S C,HSU S K,WANG Y,et al. Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan[J]. Journal of Asian Earth Sciences,2013,92(5):201-214.

    Google Scholar

    [42] ÇIFÇI G,LIMONOV A,DIMITROV L,et al. Mud volcanoes and dome:like structures at the eastern Mediterranean Ridge[J]. Marine Geophysical Researches,1997,19(5):421-438. doi: 10.1023/A:1004319226273

    CrossRef Google Scholar

    [43] SUMNER R H,WESTBROOK G K. Mud diapirism in front of the barbados accretionary wedge:the influence of fracture zones and North America–South America Plate Motions[J]. Marine and Petroleum Geology,2001,18(5):591-613. doi: 10.1016/S0264-8172(01)00010-1

    CrossRef Google Scholar

    [44] LEÓN R,SOMOZA L,MEDIALDEA T,et al. Sea-floor features related to hydrocarbon seeps in deepwater carbonate-mud mounds of the Gulf of Cádiz:from mud flows to carbonate precipitates[J]. Geo-marine Letters,2007,27(2):237-247.

    Google Scholar

    [45] NISHIO Y,IJIRI A,TOKI T,et al. Origins of lithium in submarine mud volcano fluid in the Nankai accretionary wedge[J]. Earth and Planetary Science Letters,2015,414:144-155.

    Google Scholar

    [46] KRASTEL S,SPIESS V,IVANOV M,et al. Acoustic investigations of mud volcanoes in the Sorokin Trough,Black Sea[J]. Geo-marine Letters,2003,23(3):230-238.

    Google Scholar

    [47] ROVERE M,GAMBERI F,MERCORELLA A,et al. Venting and seepage systems associated with mud volcanoes and mud diapirs in the southern Tyrrhenian Sea[J]. Marine Geology,2014,347:153-171. doi: 10.1016/j.margeo.2013.11.013

    CrossRef Google Scholar

    [48] DUPRÉ S,BUFFET G,MASCLE J,et al. High-resolution mapping of large gas emitting mud volcanoes on the Egyptian continental margin (nile deep sea fan) by Auv surveys[J]. Marine Geophysical Researches,2008,29(4):189-196.

    Google Scholar

    [49] DIMITROV L,WOODSIDE J. Deep sea pockmark environments in the eastern Mediterranean[J]. Marine Geology,2003,195(1):263-276.

    Google Scholar

    [50] HOVLAND M, JENSEN S. The Nyegga seeps revisited - hydrates, pipes, carbonates, pingoes, exotic fauna, and complex pockmarks[C]//Eage workshop on shallow anomalies. Indications of Prospective Petroleum Systems, 2014.

    Google Scholar

    [51] NIEMANN H,DUARTE J,HENSEN C,et al. Microbial methane turnover at mud volcanoes of the Gulf of Cadiz[J]. Geochimica Et Cosmochimica Acta,2006,70(21):5336-5355. doi: 10.1016/j.gca.2006.08.010

    CrossRef Google Scholar

    [52] VOGT P R,CHERKASHEV G,GINSBURG G,et al. Hakon mosby mud volcano provides unusual example of venting[J]. John Wiley and Sons,Ltd,1997,78(48):549-557.

    Google Scholar

    [53] GINSBURG G,MILKOV A V,SOLOVIEV V,et al. Gas hydrate accumulation at the Hakon Mosby mud volcano[J]. Geo-Marine Letters,1999,19(1):57-67.

    Google Scholar

    [54] MILKOV A V,VOGT P R,CRANE K,et al. Geological,geochemical,and microbial processes at the hydrate-bearing Håkon Mosby mud volcano:a review[J]. Chemical Geology,2004,205(3):347-366.

    Google Scholar

    [55] 赵汗青,吴时国,徐 宁,等. 东海与泥底辟构造有关的天然气水合物初探[J]. 现代地质,2006,20(1):115-122. doi: 10.3969/j.issn.1000-8527.2006.01.014

    CrossRef Google Scholar

    [56] 孟祥君,张训华,韩 波,等. 海底泥火山地球物理特征[J]. 海洋地质前沿,2012,28(12):6-9.

    Google Scholar

    [57] 阎贫,王彦林,郑红波,等. 东沙群岛西南海区泥火山的地球物理特征[J]. 海洋学报(中文版),2014,36(7):142-148. doi: 10.3969/j.issn.0253-4193.2014.07.016

    CrossRef Google Scholar

    [58] EGOROV A V,CRANE K,VOGT P R,et al. Gas hydrates that outcrop on the sea floor:stability models[J]. Geo-marine Letters,1999,19(1):68-75.

    Google Scholar

    [59] XU W Y,CAROLYN R. Predicting the occurrence,distribution,and evolution of methane gas hydrate in porous marine sediments[J]. John Wiley and Sons,Ltd,1999,104(B3):5081-5095.

    Google Scholar

    [60] LU H L,YU S,LEE J,et al. Complex gas hydrate from the cascadia margin[J]. Nature:International Weekly Journal of Science,2007,445(7125):303-306.

    Google Scholar

    [61] 何家雄,钟灿鸣,姚永坚,等. 南海北部天然气水合物勘查试采及研究进展与勘探前景[J]. 海洋地质前沿,2020,36(12):3-16.

    Google Scholar

    [62] HUGUEN C,MASCLE J,CHAUMILLON E,et al. Structural setting and tectonic control of mud volcanoes from the central Mediterranean Ridge (eastern Mediterranean)[J]. Marine Geology,2004,209(1):245-263.

    Google Scholar

    [63] TINIVELLA U, GIUSTINIANI M. An Overview of Mud Volcanoes Associated to Gas Hydrate System[M], 2012: 226-252.

    Google Scholar

    [64] 何家雄,祝有海,翁荣南,等. 南海北部边缘盆地泥底辟、泥火山特征及油气地质意义[J]. 科学,2012,64(2):15-18.

    Google Scholar

    [65] HENSEN C,NUZZO M,HORNIBROOK E,et al. Sources of mud volcano fluids in the gulf of Cadiz:indications for hydrothermal imprint[J]. Geochimica Et Cosmochimica Acta,2007,71(5):1232-1248. doi: 10.1016/j.gca.2006.11.022

    CrossRef Google Scholar

    [66] PEREZ C,FESEKER T,MIENERT J,et al. The Hakon Mosby mud volcano:330 000 years of focused fluid flow activity at the Sw Barents Sea slope[J]. Marine Geology,2009,262(1):105-115.

    Google Scholar

    [67] ELGER J,BERNDT C,RÜPKE L,et al. Submarine slope failures due to pipe structure formation.[J]. Nature Communications,2018,9(1):715. doi: 10.1038/s41467-018-03176-1

    CrossRef Google Scholar

    [68] BOHRMANN G,IVANOV M,FOUCHER J,et al. Mud volcanoes and gas hydrates in the Black Sea:new data from Dvurechenskii and Odessa mud volcanoes[J]. Geo-marine Letters,2003,23(3):239-249.

    Google Scholar

    [69] ALOISI G,PIERRE C,ROUCHY J M,et al. Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilisation[J]. Earth and Planetary Science Letters,2000,184(1):321-338.

    Google Scholar

    [70] MAZURENKO L L,SOLOVIEV V A,BELENKAYA I,et al. Mud Volcano gas hydrates in the gulf of Cadiz[J]. Terra Nova,2002,14(5):321-329. doi: 10.1046/j.1365-3121.2002.00428.x

    CrossRef Google Scholar

    [71] FRIEDRICHS M,KRASTEL S,SPIESS V,et al. Three-dimensional seismic investigations of the Sevastopol mud volcano in correlation to gas/fluid migration pathways and indications for gas hydrate occurrences in the Sorokin Trough (Black Sea)[J]. Geochemistry Geophysics Geosystems,2013,9(5):1-22.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(1)

Article Metrics

Article views(1786) PDF downloads(23) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint