2022 Vol. 38, No. 8
Article Contents

HAO Liancheng, YUAN Jidong, ZHENG Lilong, ZHANG Jiankang, ZHANG Decheng, DAI Youxu. Grain-size characteristics of surface sediment and sedimentary environment in Zhanjiang Bay[J]. Marine Geology Frontiers, 2022, 38(8): 1-10. doi: 10.16028/j.1009-2722.2021.152
Citation: HAO Liancheng, YUAN Jidong, ZHENG Lilong, ZHANG Jiankang, ZHANG Decheng, DAI Youxu. Grain-size characteristics of surface sediment and sedimentary environment in Zhanjiang Bay[J]. Marine Geology Frontiers, 2022, 38(8): 1-10. doi: 10.16028/j.1009-2722.2021.152

Grain-size characteristics of surface sediment and sedimentary environment in Zhanjiang Bay

More Information
  • Based on the results of particle size analysis of 61 surface sediment samples collected in October, 2020 in Zhanjiang Bay, Guangdong, China, the particle size parameters of sediments were summarized, and the sediment types were classified. The Pejrup triangle diagram was used to divide the sedimentary dynamic environment of Zhanjiang Bay. The Gao-Collins particle size trend analysis model was used to explore the sediment migration trend. Results show that there are five types of surface sediments in Zhanjiang Bay, among which sand, silty sand, and sandy silt are the most widely distributed. The particle size composition is mainly fine sand, and the average particle size is 3.93Φ. The sorting is poor. The particle size distribution curve is mainly positive and normal distribution. The discriminant diagram of sedimentary dynamics reveals that the sedimentary hydrodynamic force in Zhanjiang Bay is strong; and it is generally weaker inside the bay than outside the bay and gradually weakens oceanward. The particle size trend analysis shows that the whole water in Zhanjiang Bay moves to the tidal deep trough in the south, while water of outer bay flows counterclockwise around the sedimentary center. The movement and distribution of surface sediments in the bay are mainly affected by sediment sources and sedimentary dynamic environments such as tides, waves, and coastal current. In recent years, the influence of human activities has become more obvious.

  • 加载中
  • [1] 张连杰,赵博,王鹏,等. 大连湾海域沉积动力环境与物质输运[J]. 海洋地质前沿,2019,35(6):12-19.

    Google Scholar

    [2] 汤世凯,于剑峰,李金鹏,等. 丁字湾近岸海域表层沉积物粒度特征及沉积动力环境[J]. 海洋地质与第四纪地质,2019,39(2):70-78. doi: 10.16562/j.cnki.0256-1492.2018022703

    CrossRef Google Scholar

    [3] 赵利,蔡观强,钟和贤,等. 海南岛东南浅海表层沉积物粒度特征及沉积环境[J]. 海洋地质与第四纪地质,2021,41(2):64-74. doi: 10.16562/j.cnki.0256-1492.2020051502

    CrossRef Google Scholar

    [4] 刘成,胡日军,朱海龙,等. 庙岛群岛海域沉积动力环境分区及沉积物输运趋势[J]. 海洋地质前沿,2018,34(8):24-33. doi: 10.16028/j.1009-2722.2018.08004

    CrossRef Google Scholar

    [5] 吕纪轩,胡日军,李毅,等. 烟台北部近岸海域表层沉积物粒度分布及沉积动力环境特征[J]. 海洋地质前沿,2020,36(4):27-36. doi: 10.16028/j.1009-2722.2019.097

    CrossRef Google Scholar

    [6] 张际标,姚兼辉,陈春亮,等. 湛江东海岛潮间带表层沉积物粒度的分布及环境要素的相关性[J]. 应用海洋学学报,2015,34(1):49-56. doi: 10.3969/J.ISSN.2095-4972.2015.01.007

    CrossRef Google Scholar

    [7] 陈碧珊,陈诗敏,何炽鹏,等. 雷州半岛红树林湿地表层沉积物粒度分布特征[J]. 现代地质,2019,33(1):198-205. doi: 10.19657/j.geoscience.1000-8527.2019.01.19

    CrossRef Google Scholar

    [8] 李拴虎. 湛江湾外航道二侧浅滩冲淤变化的成因分析[J]. 科学技术与工程,2013,13(35):10595-10599.

    Google Scholar

    [9] 贺松林,丁平兴,孔亚珍. 湛江湾沿岸工程冲淤影响的预测分析[J]. 海洋学报,1997,19(1):55-63.

    Google Scholar

    [10] 张志飞,褚裕良,何杰. 多年围填海工程对湛江湾水动力环境的影响[J]. 水利水运工程学报,2016(3):96-104.

    Google Scholar

    [11] 林微,张乔民,赵焕庭. 湛江港潮汐汊道落潮三角洲动力场模拟和沉积动态分析[J]. 热带海洋,1995,14(1):54-61.

    Google Scholar

    [12] 韩志远,谢华亮,李怀远,等. 湛江湾口外落潮三角洲演变特征[J]. 海洋地质前沿,2021,37(1):45-50. doi: 10.16028/j.1009-2722.2020.010

    CrossRef Google Scholar

    [13] 赵冲久. 湛江湾水文泥沙特性分析[J]. 水道港口,1999,20(4):16-21.

    Google Scholar

    [14] FOLK R L,ANDEWS P B,LEWIS D W. Detrital sedimentary rock classification and nomenclature for use in New Zealand[J]. New Zealand Journal of Geology and Geophysics,1970,13(4):937-968. doi: 10.1080/00288306.1970.10418211

    CrossRef Google Scholar

    [15] PEJRUP M. The triangular diagram used for classification of estuarine sediments: a new approach[C]//P. L. de Boer et al. Tide-influenced Sedimentary Environments and Facies. Dordrecht: D. Reidel Publishing Company, 1988: 289-300.

    Google Scholar

    [16] GAO S,COLLINS M. Net sediment transport patterns inferred from grain-size trends,based upon definition of “Transport Vectors”[J]. Sedimentary Geology,1992,81(1/2):47-60.

    Google Scholar

    [17] 时翠,甘华阳,夏真,等. 珠江口内伶仃洋表层沉积物粒度特征及其运移趋势[J]. 海洋地质与第四纪地质,2015,35(1):13-20.

    Google Scholar

    [18] 高抒. 沉积物粒径趋势分析:原理与应用软件[J]. 沉积学报,2009,27(5):826-836.

    Google Scholar

    [19] 程鹏,高抒. 北黄海西部海底沉积物的粒度特征和净输运趋势[J]. 海洋与湖沼,2000,31(6):604-615. doi: 10.3321/j.issn:0029-814X.2000.06.004

    CrossRef Google Scholar

    [20] 李亮,何其江,龙根元,等. 南海宣德海域表层沉积物粒度特征及其输运趋势[J]. 海洋地质与第四纪地质,2017,37(6):140-148. doi: 10.16562/j.cnki.0256-1492.2017.06.015

    CrossRef Google Scholar

    [21] 刘志杰,公衍芬,周松望,等. 海洋沉积物粒度参数3种计算方法的对比研究[J]. 海洋学报,2013,35(3):179-188.

    Google Scholar

    [22] 曹立,刘建国,何伟,等. 华南沿岸大型河流粘土矿物组合特征及对南海北部沉积物的贡献[J]. 地球科学,2018,43(2):192-202.

    Google Scholar

    [23] 叶春池,黄方. 湛江港口门潮汐地貌体系的沉积环境和沉积作用[J]. 海洋通报,1994,13(1):51-58.

    Google Scholar

    [24] 许冬,初凤友,李家彪,等. 粤西—琼东北近海沉积物的运移和沉积[J]. 吉林大学学报(地球科学版),2014,44(3):905-917.

    Google Scholar

    [25] 杨毅,徐艳东,王发云,等. 粤西沿岸流和物质输移模型研究及应用[J]. 科学技术与工程,2015,15(19):80-85. doi: 10.3969/j.issn.1671-1815.2015.19.015

    CrossRef Google Scholar

    [26] 中国科学院南海海洋研究所. 湛江港30万吨级航道改扩建工程环境影响报告书[R]. 广州: 中国科学院南海海洋研究所, 2018.

    Google Scholar

    [27] 余科平,张琴. 湛江湾海砂开采对周边海域水动力特征的影响[J]. 人民珠江,2017,38(10):65-71. doi: 10.3969/j.issn.1001-9235.2017.10.014

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(3073) PDF downloads(115) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint