2022 Vol. 38, No. 4
Article Contents

XU Yajing, ZHOU Huaiyang. The elements phase associations of ferromanganese nodules in the seamounts of the South China Sea[J]. Marine Geology Frontiers, 2022, 38(4): 20-31. doi: 10.16028/j.1009-2722.2021.146
Citation: XU Yajing, ZHOU Huaiyang. The elements phase associations of ferromanganese nodules in the seamounts of the South China Sea[J]. Marine Geology Frontiers, 2022, 38(4): 20-31. doi: 10.16028/j.1009-2722.2021.146

The elements phase associations of ferromanganese nodules in the seamounts of the South China Sea

More Information
  • The study on the association phase of major and trace elements in ferromanganese nodules is of great significance for further understanding the formation and element enrichment process in ferromanganese nodules. In this paper we applied the in-situ X-ray fluorescence spectrum (XRF) and scanned the transects for 3 nodules collected from the Jiaolong seamount (3 300 meters in depth) in the South China Sea and divided the nodules’ transects into several layers for elements sequential-leaching experiment in order to determine the adsorption phases of main and trace elements. The carbonate phase, manganese mineral phase, iron mineral phase and residual phase components in the nodules were leached respectively, and the contents of major and trace elements before and after leaching in different layers were determined by ICP-OES(MS). The results show that the most of the host phases of elements in nodules are similar to that of hydrogenetic nodules in open oceans, with Al, K, Mg, Li, Ti more enriched in residual phase, showing the unique phase pattern of marginal sea hydrogenetic nodules. From the core to the rim of the nodules, the proportion of Mg, Cu, Ni and Zn in manganese mineral phase increases with the increase of Mn/Fe ratio, which may reflect the changes in chemical and mineral composition. In addition, compared with the previous publications, we found that the experimental reagent and reaction time had a great influence on the leaching result.

  • 加载中
  • [1] HEIN J R,MIZELL K,KOSCHINSKY A,et al. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications:comparison with land-based resources[J]. Ore Geology Reviews,2013,51:1-14. doi: 10.1016/j.oregeorev.2012.12.001

    CrossRef Google Scholar

    [2] HEIN J R, KOSCHINSKY A. Deep-ocean ferromanganese crusts and nodules[M]//Holland H D, Turekian K K. Treatise on Geochemistry (Second Edition). Elsevier, 2014, 13: 273-291.

    Google Scholar

    [3] RONA P A. The changing vision of marine minerals[J]. Ore Geology Reviews,2008,33(3/4):618-666.

    Google Scholar

    [4] 鲍根德,李全兴. 南海铁锰结核(壳)的元素地球化学研究[J]. 热带海洋,1991,10(3):7.

    Google Scholar

    [5] 鲍根德,李全兴. 南海铁锰结核(壳)的稀土元素地球化学[J]. 海洋与湖沼,1993,24(3):304-313. doi: 10.3321/j.issn:0029-814X.1993.03.013

    CrossRef Google Scholar

    [6] 林振宏,季福武,张富元,等. 南海东北陆坡区铁锰结核的特征和成因[J]. 海洋地质与第四纪地质,2003,23(1):7-12.

    Google Scholar

    [7] GUAN Y,SUN X,REN Y,et al. Mineralogy,geochemistry and genesis of the polymetallic crusts and nodules from the South China Sea[J]. Ore Geology Reviews,2017,89:206-227. doi: 10.1016/j.oregeorev.2017.06.020

    CrossRef Google Scholar

    [8] ZHONG Y,CHEN Z,GONZÁLEZ F J,et al. Composition and genesis of ferromanganese deposits from the northern South China Sea[J]. Journal of Asian Earth Sciences,2017,138:110-128. doi: 10.1016/j.jseaes.2017.02.015

    CrossRef Google Scholar

    [9] BATURIN G N. Element composition of ferromanganese concretions in the Black Sea[J]. Oceanology,2010,50(1):83-92. doi: 10.1134/S0001437010010108

    CrossRef Google Scholar

    [10] GONZÁLEZ F J,SOMOZA L,LEÓN R,et al. Ferromanganese nodules and micro-hardgrounds associated with the Cadiz Contourite Channel (NE Atlantic):palaeoenvironmental records of fluid venting and bottom currents[J]. Chemical Geology,2012,310/311(5):56-78.

    Google Scholar

    [11] BATURIN G N,DUBINCHUK V T,NOVIGATSKY A N. Phase distribution of elements in ferromanganese nodules of the Kara Sea[J]. Doklady Earth Sciences,2016,471(1):1199-1203.

    Google Scholar

    [12] VERESHCHAGIN O S,PEROVA E N,BRUSNITSYN A I,et al. Ferro-manganese nodules from the Kara Sea:mineralogy,geochemistry and genesis[J]. Ore Geology Reviews,2019,106:192-204. doi: 10.1016/j.oregeorev.2019.01.023

    CrossRef Google Scholar

    [13] BATURIN G N. Geochemistry of ferromanganese nodules in the Gulf of Finland,Baltic Sea[J]. Lithology and Mineral Resources,2009,44(5):411-426. doi: 10.1134/S0024490209050010

    CrossRef Google Scholar

    [14] CONRAD T,HEIN J R,PAYTAN A,et al. Formation of Fe-Mn crusts within a continental margin environment[J]. Ore Geology Reviews,2017,87:25-40. doi: 10.1016/j.oregeorev.2016.09.010

    CrossRef Google Scholar

    [15] 徐兆凯,李安春,蒋富清,等. 东菲律宾海深水区新型铁锰结壳的特征和成因[J]. 海洋地质与第四纪地质,2006,26(4):91-98.

    Google Scholar

    [16] USUI A,GRAHAM I J,DITCHBURN R G,et al. Growth history and formation environments of ferromanganese deposits on the Philippine Sea Plate,northwest Pacific Ocean[J]. Island Arc,2007,16:420-430. doi: 10.1111/j.1440-1738.2007.00592.x

    CrossRef Google Scholar

    [17] 张振国,方念乔,杜远生,等. 南海西北缘多金属结核地球化学及其与大洋结核的对比[J]. 海洋地质与第四纪地质,2008,28(4):51-56.

    Google Scholar

    [18] ZHONG Y,CHEN Z,GONZÁLEZ,et al. Rare earth elements and yttrium in ferromanganese deposits from the South China Sea:distribution,composition and resource considerations[J]. Acta Oceanologica Sinica,2018,37:41-54.

    Google Scholar

    [19] ZHONG Y,LIU Q,CHEN Z,et al. Tectonic and paleoceanographic conditions during the formation of ferromanganese nodules from the northern South China Sea based on the high-resolution geochemistry,mineralogy and isotopes[J]. Marine Geology,2019,410:146-163. doi: 10.1016/j.margeo.2018.12.006

    CrossRef Google Scholar

    [20] ZHONG Y,CHEN Z,HEIN J R,et al. Evolution of a deep-water ferromanganese nodule in the South China Sea in response to Pacific deep-water circulation and continental weathering during the Plio-Pleistocene[J]. Quaternary Science Reviews,2020,229:106-106.

    Google Scholar

    [21] GUAN Y,SUN X M,JIANG X D,et al. The effect of Fe-Mn minerals and seawater interface and enrichment mechanism of ore-forming elements of polymetallic crusts and nodules from the South China Sea[J]. Acta Oceanologica Sinica,2017,36(6):34-46. doi: 10.1007/s13131-017-1004-4

    CrossRef Google Scholar

    [22] GUAN Y,REN Y Z,SUN X M,et al. Helium and argon isotopes in the Fe-Mn polymetallic crusts and nodules from the South China Sea:constraints on their genetic sources and origins[J]. Minerals,2018,8(10):471. doi: 10.3390/min8100471

    CrossRef Google Scholar

    [23] GUAN Y,REN Y Z,SUN X M,et al. Fine scale study of major and trace elements in the Fe-Mn nodules from the South China Sea and their metallogenic constraints[J]. Marine Geology,2019,416:105978. doi: 10.1016/j.margeo.2019.105978

    CrossRef Google Scholar

    [24] REN Y Z,SUN X M,GUAN Y,et al. Distribution of rare earth elements plus yttrium among major mineral phases of marine Fe-Mn crusts from the South China Sea and western Pacific Ocean:a comparative study[J]. Minerals,2018,9(1):8.

    Google Scholar

    [25] KOSCHINSKY A,HALBACH P. Sequential leaching of marine ferromanganese precipitates:genetic implications[J]. Geochimica et Cosmochimica Acta,1995,59(24):5113-5132. doi: 10.1016/0016-7037(95)00358-4

    CrossRef Google Scholar

    [26] BONATTI E. Classification and genesis of submarine iron-manganese deposits[J]. Ferromanganese Deposits on the Ocean Floor,1972:149-166.

    Google Scholar

    [27] MOHWINKEL D,KLEINT C,KOSCHINSKY A. Phase associations and potential selective extraction methods for selected high-tech metals from ferromanganese nodules and crusts with siderophores[J]. Applied Geochemistry,2014,43:13-21. doi: 10.1016/j.apgeochem.2014.01.010

    CrossRef Google Scholar

    [28] BYRNE R H. Inorganic speciation of dissolved elements in seawater:the influence of pH on concentration ratios[J]. Geochemical Transactions,2002,3(1):11-16. doi: 10.1186/1467-4866-3-11

    CrossRef Google Scholar

    [29] KOSCHINSKY A,HEIN J R. Uptake of elements from seawater by ferromanganese crusts:solid-phase associations and seawater speciation[J]. Marine Geology,2003,198(3/4):331-351.

    Google Scholar

    [30] KOSCHINSKY A,HEIN J R,KRAEMER D,et al. Platinum enrichment and phase associations in marine ferromanganese crusts and nodules based on a multi-method approach[J]. Chemical Geology,2019,539:119426.

    Google Scholar

    [31] KONSTANTINOVA N,HEIN J R,et al. Mineral phase-element associations based on sequential leaching of ferromanganese crusts,Amerasia Basin Arctic Ocean[J]. Minerals,2018,8(10):460-460. doi: 10.3390/min8100460

    CrossRef Google Scholar

    [32] MURRAY J W,DILLARD J G. The Oxidation of Cobalt (II) adsorbed on manganese dioxide[J]. Geochimica et Cosmochimica Acta,1979,43(5):781-787. doi: 10.1016/0016-7037(79)90261-8

    CrossRef Google Scholar

    [33] 乔志国. 深海铁锰结核中锰矿物的微观特征[J]. 自然杂志,2016,38(4):263-270.

    Google Scholar

    [34] PUJING P,SUSAK N J. The speciation of cobalt in seawater and fresh waters at 25 degrees C[J]. Geochemical Journal,1991,25:411-420. doi: 10.2343/geochemj.25.411

    CrossRef Google Scholar

    [35] TAKAHASHI Y,MANCEAU A,GEOFFROY N,et al. Chemical and structural control of the partitioning of Co,Ce,and Pb in marine ferromanganese oxides[J]. Geochimica et Cosmochimica Acta,2007,71(4):984-1008. doi: 10.1016/j.gca.2006.11.016

    CrossRef Google Scholar

    [36] BYRNE R H,KUMP L R,CANTRELL K J. The influence of temperature and pH on trace metal speciation in seawater[J]. Elsevier,1988,25(2):163-181.

    Google Scholar

    [37] STANLEY J K,BYRNE R H. Inorganic complexation of Zinc(II) in seawater[J]. Geochimica et Cosmochimica Acta,1990,54(3):753-760. doi: 10.1016/0016-7037(90)90370-Z

    CrossRef Google Scholar

    [38] MANCEAU A,LANSON M,GEOFFROY N. Natural speciation of Ni,Zn,Ba,and As in ferromanganese coatings on quartz using X-ray fluorescence,absorption,and diffraction[J]. Geochimica et Cosmochimica Acta,2007,71(1):95-128. doi: 10.1016/j.gca.2006.08.036

    CrossRef Google Scholar

    [39] PIPER D Z. Rare earth elements in ferromanganese nodules and other marine phases[J]. Geochimica et Cosmochimica Acta,1974,38(7):1007-1022. doi: 10.1016/0016-7037(74)90002-7

    CrossRef Google Scholar

    [40] STUMM W, MORGAN J J. Aquatic Chemistry[M]. 3rd ed. New York: Wiley, 1996.

    Google Scholar

    [41] SOHRIN Y,MATSUI M,NAKAYAMA E. Contrasting behaviour of tungsten and molybdenum in the Okinawa Trough,the East China Sea and the Yellow Sea[J]. Geochimica et Cosmochimica Acta,1999,63:3457-3466. doi: 10.1016/S0016-7037(99)00273-2

    CrossRef Google Scholar

    [42] FOSTER A, KLOFAS J, HEIN J R, et al. Speciation of energy critical elements in marine ferromanganese crusts and nodules by principal component analysis and leastsquares fits to XAFS spectra[C]//American Geophysical Union, Fall Meeting, 2011: 5-11.

    Google Scholar

    [43] 周怀阳,朱启宽,季福武,等. 南海深水海山上的新发现[J]. 科技导报,2020,600(18):85-90.

    Google Scholar

    [44] 武光海,周怀阳,杨树锋,等. 富钴结壳生长过程中铁锰氧化物矿物组合的变化[J]. 矿物学报,2001,21(2):137-143. doi: 10.3321/j.issn:1000-4734.2001.02.004

    CrossRef Google Scholar

    [45] LYLE M,DYMOND J,HEATH G R. Copper-nickel-enriched ferromanganese nodules and associated crusts from the Bauer Basin,northwest Nazca plate[J]. Earth and Planetary Science Letters,1977,35(1):55-64. doi: 10.1016/0012-821X(77)90028-0

    CrossRef Google Scholar

    [46] HALBACH P,SCHERHAG C,HEBISCH U,et al. Geochemical and mineralogical control of different genetic types of deep-sea nodules from the Pacifific Ocean[J]. Mineralium Deposita,1981,16(1):59-84.

    Google Scholar

    [47] USUI A,SOMEYA M. Distribution and composition of marine hydrogenetic and hydrothermal manganese deposits in the northwest Pacific[J]. Geological Society London Special Publications,1997,119(1):177-198. doi: 10.1144/GSL.SP.1997.119.01.12

    CrossRef Google Scholar

    [48] POST J E. Manganese oxide minerals:crystal structures and economic and environmental significance[J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96(7):3447-3454. doi: 10.1073/pnas.96.7.3447

    CrossRef Google Scholar

    [49] MELLIN T A,LEI G. Stabilization of 10-manganates by interlayer cations and hydrothermal treatment:implications for the mineralogy of marine manganese concretions[J]. Marine Geology,1993,115(1/2):67-83.

    Google Scholar

    [50] 仲义,陈忠,莫爱彬,等. 南海北部铁锰结核成因及元素的赋存状态[J]. 热带海洋学报,2017,36(2):48-59.

    Google Scholar

    [51] RAY S,GAULT H R,DODD C G. The separation of clay minerals from carbonate rocks[J]. American Mineralogist,1957,42:681-686.

    Google Scholar

    [52] CHESTER R,HUGHES M J. A chemical technique for the separation of ferro-manganese minerals,carbonate minerals and adsorbed trace elements from pelagic sediments[J]. Chemical Geology,1967,2:249-262. doi: 10.1016/0009-2541(67)90025-3

    CrossRef Google Scholar

    [53] MOORBY S A,CRONAN D S. The distribution of elements between co-existing phases in some marine ferromanganese-oxide deposits[J]. Geochimica et Cosmochimica Acta,1981,45(10):1855-1877. doi: 10.1016/0016-7037(81)90016-8

    CrossRef Google Scholar

    [54] BERGER C J M,LIPPIATT S M,LAWRENCE M G,et al. Application of a chemical leach technique for estimating labile particulate aluminum,iron,and manganese in the Columbia River plume and coastal waters off Oregon and Washington[J]. Journal of Geophysical Research:Oceans,2008,113:C00B01.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(2821) PDF downloads(476) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint