Citation: | HE Jinhai, WU Jing, BAI Haijun, XU Xinming, LI Zhensheng. Mode of oil-gas migration along fault strike in Enping Sag of Pearl River Mouth Basin[J]. Marine Geology Frontiers, 2022, 38(8): 55-66. doi: 10.16028/j.1009-2722.2021.138 |
The transformation in philosophy of oil-gas exploration often brings new exploration breakthroughs. Based on the study of the faults in Enping Sag of the Pearl River Mouth Basin, we recognized a new type of fault that is developed in the northern uplift of the steep slope zone of Enping Sag with the following four characteristics: 1) it intersected with the major fault of the sag at a large angle; 2) it became active at the middle stage of the development of faulted lacustrine basin, forming the sedimentary sources channel for sand transport to the lacustrine basin; 3) at the accumulation stage, it cut the source rocks and sand bodies that were input along the faults in the middle faulting period; 4) the internal transport ridge of the fault were formed along the fault strike due to gradual uplifting of strata toward the uplifting area. Under the sealing effect of the regional thick mudstone cover layer, oil and gas migrated along the fault strike. In this study, exploration breakthroughs were made in the northern uplift of the steep slope zone of Enping Sag that is traditionally considered difficult for oi-gas migration and reservoir formation, and now a series of exploration discoveries have been made in this area. The migration mode of oil and gas along fault strike in the Enping Sag of Pearl River Mouth basin can be used as a reference for practice in similar areas.
[1] | 孙同文,付广,吕延防,等. 断裂输导流体的机制及输导形式探讨[J]. 地质论评,2012,58(6):1081-1090. doi: 10.3969/j.issn.0371-5736.2012.06.008 |
[2] | 刘玉祥,张金功,王永诗,等. 断层输导封闭性能及其油气运移机理研究现状[J]. 兰州大学学报(自然科学版),2008,44(s1):54-57. |
[3] | 孙同文. 含油气盆地输导体系特征及其控藏作用研究[D]. 大庆: 东北石油大学, 2014 |
[4] | 薛盼. 断_砂配置对油气运移与聚集的控制作用[D]. 大庆: 东北石油大学, 2015 |
[5] | 姜振海. 不同方向运移油气在断裂附近聚集特征的差异性[J]. 大庆石油地质与开发,2017,36(5):1-7. |
[6] | 罗晶. 不同运移方向下断盖配置对油气运移作用的差异性[J]. 大庆石油地质与开发,2019,38(4):31-37. |
[7] | 付广,展铭望. 油气沿断裂垂向与砂体侧向运移转换条件分析:以渤海湾盆地局部构造为例[J]. 中国矿业大学学报,2017,46(2):336-343. |
[8] | 付广,杨敬博. 断盖配置对沿断裂运移油气的封闭作用:以南堡凹陷中浅层为例[J]. 地球科学:中国地质大学学报,2013,38(4):783-791. |
[9] | 孙同文,吕延防,刘哲,等. 断裂控藏作用定量评价及有利区预测:以辽河坳陷齐家—鸳鸯沟地区古近系沙河街组三段上亚段为例[J]. 石油与天然气地质,2013,34(6):790-796. doi: 10.11743/ogg20130611 |
[10] | 胡胜男. 油气垂向与侧向运移互换条件及特征的差异性[J]. 大庆石油地质与开发,2018,37(5):22-26. |
[11] | 王超,吕延防,王权,等. 油气跨断层侧向运移评价方法:以渤海湾盆地冀中坳陷霸县凹陷文安斜坡史各庄鼻状构造带为例[J]. 石油勘探与开发,2017,44(6):880-888. doi: 10.11698/PED.2017.06.05 |
[12] | 陈伟. 含油气盆地断裂带内部结构特征及其与油气运聚的关系[D]. 青岛: 中国石油大学(华东), 2011 |
[13] | 陈伟,吴智平,侯峰,等. 油气沿断裂走向运移研究[J]. 中国石油大学学报(自然科学版),2010,34(6):25-30. doi: 10.3969/j.issn.1673-5005.2010.06.005 |
[14] | 王亚琳. 油气沿断层走向运移的地质特征及相关问题探讨:以济阳坳陷沾化凹陷邵家断层为例[J]. 石油实验地质,2018,40(5):684-690. doi: 10.11781/sysydz201805684 |
[15] | 宁方兴. 济阳坳陷地层油藏成藏机制与差异性[J]. 油气地质与采收率,2015,22(3):52-56. doi: 10.3969/j.issn.1009-9603.2015.03.009 |
[16] | 宿雯,杨海风,揣媛媛,等. 渤海南部缓坡带新近系油气运移模式[J]. 海洋地质前沿,2020,36(11):69-76. |
[17] | 侯启军,冯子辉,霍秋立. 海拉尔盆地乌尔逊凹陷石油运移模式与成藏期[J]. 地球科学:中国地质大学学报,2004,29(4):397-403. doi: 10.3321/j.issn:1000-2383.2004.04.004 |
[18] | 宿碧霖. 文安地区沙一、二段断裂密集带及其对油气成藏的控制作用[D]. 沈阳: 东北石油大学, 2017: 47-52. |
[19] | 孙同文,吕延防,刘宗堡,等. 大庆长垣以东地区扶余油层油气运移与富集[J]. 石油勘探与开发,2011,38(6):700-707. |
[20] | 孙英杰. 乌尔逊凹陷油气成藏机制及主控因素研究[D]. 大庆: 大庆石油学院, 2004: 95-100. |
[21] | 赵鹏,彭光荣,吴静,等. 油气穿越未成岩断裂运移富集成藏模式与主控因素:以珠江口盆地恩平凹陷为例[J]. 大地构造与成矿学,2021,45(1):148-157. |
[22] | 朱定伟,彭光荣,张忠涛,等. 油气“穿断运移”模式、评价方法与应用:以珠江口盆地恩平凹陷为例[J]. 大地构造与成矿学,2021,45(1):140-147. |
[23] | 米立军,张向涛,陈维涛,等. 珠江口盆地珠一坳陷古近系油气富集规律及下一步勘探策[J]. 中国海上油气,2018,30(6):1-13. |
[24] | 张向涛,彭光荣,朱定伟,等. 珠江口盆地恩平凹陷CO2成藏特征与成藏过程[J]. 大地构造与成矿学,2021,45(1):211-218. |
[25] | 叶青. 南海北部陆缘晚中生代构造体系: 动力学以及对珠江口盆地新生代构造的制约[D]. 武汉: 中国地质大学(武汉), 2019 |
[26] | HE Z Y,XU X S. Petrogenesis of the late Yanshanian mantle-derived intrusions in southeastern China:response to the geodynamics of Paleo-Pacific plate subduction[J]. Chemical Geology,2012,328(11):208-221. |
[27] | LI J,ZHANG Y,DONG S,et al. Cretaceous tectonic evolution of South China:a preliminary synthesis[J]. Earth-Science Reviews,2014,134:98-136. doi: 10.1016/j.earscirev.2014.03.008 |
[28] | SHI H S, LI C F. Mesozoic and early Cenozoic tectonic convergence-to-rifting transition prior to opening of the South China Sea[J]. International Geology Review. 2012, 54(15): 1801-1828. |
[29] | 沈鹏飞. 南雄—丹霞盆地白垩纪沉积序列演化特征及其对南海构造转换的响应[D]. 北京: 中国地质大学(北京), 2014. |
[30] | 邢光福,陈荣,杨祝良,等. 东南沿海晚白垩世火山岩浆活动特征及其构造背景[J]. 岩石学报,2009,25(1):77-91. |
[31] | LI Z X,LI X H,CHUNG S L,et al. Magmatic switch-on and switch-off along the South China continental margin since the Permian:transition from an Andean-type to a western pacific-type plate boundary[J]. Tectonophysics,2012,532-535(3):271-290. |
[32] | ENGEBRETSON D C. Relative motions between oceanic and continental plates in the Pacific basin[M]. geological Society of America, 1985. |
[33] | MARUYAMA S,ISOZAKI Y,KIMURA G,et al. Paleogeographic maps of the Japanese Islands:plate tectonic synthesis from 750 Ma to the present[J]. Island arc,1997,6(1):121-142. doi: 10.1111/j.1440-1738.1997.tb00043.x |
[34] | 朱光,王道轩,刘国生,等. 郯庐断裂带的演化及其对西太平洋板块运动的响应[J]. 地质科学,2004,40(40):36-49. |
[35] | LI X H. Cretaceous magmatism and lithospheric extension in Southeast China[J]. Journal of Asian Earth Science,2000,18(3):293-305. doi: 10.1016/S1367-9120(99)00060-7 |
[36] | ZHOU X M,LI W X. Origin of Late Mesozoic igneous rocks in Southeastern China:implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics,2000,326(3-4):269-287. doi: 10.1016/S0040-1951(00)00120-7 |
[37] | ZHOU X M,SUN T,SHEN W Z,et al. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:a response to tectonic evolution[J]. Episodes,2006,29(1):26. doi: 10.18814/epiiugs/2006/v29i1/004 |
[38] | 邓棚, 梅廉夫, 杜家元,等. 珠江口盆地西江主洼低角度边界正断层特征及成因演化[J]. 石油与天然气地质,2020,34(3):606-616. |
[39] | WANG D,SHU L. Late Mesozoic basin and range tectonics and related magmatism in Southeast China[J]. Geoscience Frontiers,2012,3(2):109-124. doi: 10.1016/j.gsf.2011.11.007 |
[40] | YE Q, MEI L F, SHI H,. A low-angle normal fault and basement structures within the Enping Sag, Pearl River Mouth Basin: Insights into late Mesozoic to early Cenozoic tectonic evolution of the South China Sea area[[J]. Tectonophysics,2018,731/732:1-16. |
[41] | ZUO X,CHAN L S,Gao J F. Compression-extension transition of continental crust in a subduction zone:A parametric numerical modeling study with implications on Mesozoic-Cenozoic tectonic evolution of the Cathaysia Block[J]. Plos One,2017,12(2):e0171536. doi: 10.1371/journal.pone.0171536 |
[42] | MORLEY C K. Late Cretaceous–early Palaeogene tectonic development of SE Asia[J]. Earth-Science Reviews,2012,115(1/2):37-75. doi: 10.1016/j.earscirev.2012.08.002 |
[43] | MORLEY C K. Major unconformities/termination of extension events and associated surfaces in the South China Seas:review and implications for tectonic development[J]. Journal of Asian Earth Sciences,2016,120:62-86. doi: 10.1016/j.jseaes.2016.01.013 |
[44] | ZAHIROVIC S. ,SETON M.,MÜLLER R. D. The cretaceous and Cenozoic tectonic evolution of Southeast Asia[J]. Solid Earth Discussions,2014,5(2):1335-1422. |
[45] | BAI Y,WU S,LIU Z,et al. Full-fit reconstruction of the South China Sea conjugate margins[J]. Tectonophysics,2015,661:121-135. doi: 10.1016/j.tecto.2015.08.028 |
[46] | FORSYTH D,UYEDA S. On the relative importance of the driving forces of plate motion[J]. Geophysical Journal International,1975,43(1):163-200. doi: 10.1111/j.1365-246X.1975.tb00631.x |
[47] | LAPIERRE H,JAHN B M,CHARVET J,et al. Mesozoic felsic arc magmatism and continental olivine tholeiites in Zhejiang Province and their relationship with the tectonic activity in southeastern China[J]. Tectonophysics,1997,274(4):321-338. doi: 10.1016/S0040-1951(97)00009-7 |
[48] | QING YEA,LIANFU MEI,HESHENG Shi,et al. The Late Cretaceous tectonic evolution of the South China Sea area:An overview,and new perspectives from 3D seismic reflection data[J]. Earth-Science Reviews,2018,187:186-204. doi: 10.1016/j.earscirev.2018.09.013 |
[49] | SHU L S,ZHOU X M,DENG P,et al. Mesozoic tectonic evolution of the Southeast China Block:New insights from basin analysis[J]. Journal of Asian Earth Sciences,2009,34(3):376-391. doi: 10.1016/j.jseaes.2008.06.004 |
[50] | 李显武, 周新民. 中国东南部晚中生代俯冲带探索[J]. 高校地质学报, 1995, 5(2): 164-169. |
[51] | REN J,TAMAKI K,LI S,et al. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas[J]. Tectonophysics,2002,344(3):175-205. |
[52] | 邓棚. 南海北部陆缘古近纪多幕裂陷作用属性及转换: 以珠江口盆地珠一坳陷为例[D]. 武汉: 中国地质大学(武汉), 2018 |
[53] | 吴哲,王文勇,张忠涛,等. 张扭性断裂带的生长过程与油气穿断运移评价:以珠江口盆地恩平凹陷为例[J]. 海洋地质前沿,2020,36(1):50-58. |
[54] | PIGOTT J D,RU K. Basin superposition on the northern margin of the South China Sea[J]. Tectonophysics,1994,235(1/2):27-50. |
[55] | ZHOU D,RU K,CHEN H. Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region[J]. Tectonophysics,1995,251(1-4):161-177. doi: 10.1016/0040-1951(95)00018-6 |
[56] | 周蒂,陈汉宗,吴世敏,等. 南海的右行陆缘裂解成因[J]. 地质学报,2002,76(2):181-190. |
[57] | 胡阳,吴智平,钟志洪,等. 珠江口盆地珠一坳陷始新世中-晚期构造变革特征及成因[J]. 石油与天然气地质,2016,37(5):779-785. doi: 10.11743/ogg20160518 |
[58] | 叶青,施和生,梅廉夫,等. 珠江口盆地珠一坳陷裂后期断裂作用:迁移、转换及其动力学[J]. 地球科学,2017,42(1):105-118. |
[59] | 胡阳,吴智平,何敏,等. 珠江口盆地新近纪构造特征与演化[J]. 高校地质学报,2018, 24(3):433-441. |
[60] | 施和生,杜家元,梅廉夫,等. 珠江口盆地惠州运动及其意义[J]. 石油勘探与开发,2020,47(3):447-461. doi: 10.11698/PED.2020.03.02 |
[61] | 熊万林,朱俊章,施洋,等. 珠江口盆地珠一坳陷原油密度分布及其成因[J]. 海洋地质前沿,2019,35(1):43-52. |
[62] | 刘玉祥,张金功,王永诗,等. 断层输导封闭性能及其油气运移机理研究现状[J]. 兰州大学学报(自然科学版),2008(S1):54-57. |
[63] | 付广, 段海凤, 祝彦贺. 原油通过断裂带渗滤运移的物理模拟及其研究意义[ J] . 油气地质与采收率, 2006, 13(1) : 40-43. |
[64] | 华保钦. 构造应力场, 地震泵和油气运移[ J] . 沉积学报, 1995, 13(2) : 77-84. |
A comprehensive histogram of the Zhu I Depression in the Pearl River Mouth Basin[25]
Structure location map of Enping Sag[21]
Seismic profile characteristic map of strike migration fault
Dynamic background map of pre-existing fault development[48]
Pre-existing faults in Zhu I Depression[25]
Structure profile of Enping Sag
Development pattern of strike migration fault in middle faulting stage of Enping Sag
Fault development map of Zhu I Depression in T32 period
A histogram of log wells in the study area
Mode pattern diagram of internal transport ridge of strike migration fault
Comparison of oil and gas migration modes between depression-controlling faults and strike-migration faults
Strike migration pattern[14]
Stereoscopic map of development characteristics of strike-migration faults
Example of oil and gas migration in the Enping Sag
Comparison of biomarker characteristics of oil and gas migration in the Enping Sag